簡易檢索 / 詳目顯示

研究生: 陳彥志
Yen-Jhih Chen
論文名稱: 氧化鋅奈米線材之研究及應用
the study of zinc oxide nanowires and its applications
指導教授: 陳良益
Liang-Yih Chen
口試委員: 林俊一
Chun-I Lin
鍾宜璋
Yi-Chang Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 101
中文關鍵詞: 氧化鋅奈米線水熱法
外文關鍵詞: zinc oxide nanowires, hydrothermal
相關次數: 點閱:349下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究是利用水熱法在銦錫氧化物導電玻璃上成長垂直型態的氧化鋅奈米線。在成長中並添加聚乙基亞胺來進行線徑的控制。此外,氧化鋅奈米線的成長速率除了與濃度及溫度有關以外,pH值亦是主要的變因之一。因此,在論文中藉由添加氨水來提升反應環境的pH值。當pH值大於10.8時,會加快其成長速率。不過成長速率的提升伴隨的就是原子排列的不完整,使得氧化鋅產生大量的缺陷。經過500oC的退火處理後,可使氧化鋅的晶格重新排列,減少因成長過程中而產生的表面缺陷,同時氨水所解離的氮離子摻雜到氧化鋅晶格內部而產生鍵結,並發現氧化鋅奈米線品質的提升會與氮離子的摻雜有關。
而在不同條件之下所成長的氧化鋅奈米線材料之載子濃度值的估算,則藉由電化學阻抗頻譜分析法配合適當的等效電路模型在施加不同的偏壓之下進行氧化鋅奈米線的電容阻抗分析。由分析的結果發現:氧化鋅奈米線的載子濃度會隨著表面缺陷的多寡而改變。當氧化鋅奈米線的缺陷越多時,空乏區內的載子濃度就會升高;退火處理後使得缺陷減少,載子濃度也會隨著降低。
由於量子侷限效應的關係,一維單晶奈米材料具有極佳的電子傳遞速率,加上氧化鋅表面與外界環境產生能帶彎曲的現象,可將氧化鋅奈米線排列橫跨在指叉狀電極之間來製作感測元件。然而微影技術製作指叉狀電極的成本太高。因此,在本研究中利用低成本的的高分子固化劑嚐試以微接觸法將金屬電極直接轉移到基板上。


In this study, vertically-aligned zinc oxide nanowires (ZnO-NWs) were grown on the indium-doped tin oxide transparent conducting glass substrates. During growth, polyethyleneimine (PEI) was used to control the diameters of ZnO-NWs. In addition, the growth rate of ZnO-NWs was affected by precursor concentration and temperature, pH value was also anther control parameter. Therefore, ammonium water was used to adjust the pH value of growth condition in this study. When pH value is higher than 10.8, the growth rate is too fast to induce a lot of structural defects during ZnO-NWs formation. After 500oC annealing, the lattice of ZnO-NWs was re-arranged to diminish the surface defects induced in the period of growth. In addition, the nitrogen will dope into lattice of ZnO-NWs. From analysis, we can find that the qualities of ZnO-NWs are related to the doping of nitrogen.
In order to analyze the carrier concentrations inside ZnO-NWs grown under different growth condition, electrochemical impedance spectroscopy combining equivalent circuit to estimated the resistance and capacitance of interfaces under various reversed biases. From analysis results, we can know that the carrier concentration will varied with the changes of surface defects. When the surface defects of ZnO-NWs increased, the carrier concentration inside the depletion region of ZnO nanowires also increased. After thermal annealing treatment, the carrier concentration deceased due to reduce the surface defects.
Owing to the quantum confinement effect, one-dimension single crystal nanomaterials have excellent electron transport rate. Combing the band bending behavior existed on the interface between ZnO-NWs and environment, ZnO-NWs can be across between the inter-digital electrodes to be sensors. The photolithography is necessary to be used on the electrode pattern fabrication. However, the cost of photolithography is high. Herein, a low cost polymer to be used as mold to transfer metal electrode on another substrates by using partial curable polymer as adhesion layer.

中文摘要 I Abstract III 致謝 V 目錄 VI 表目錄 VII 圖目錄 VIII 第一章、緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章、理論基礎與文獻回顧 4 2-1 氧化鋅的基本性質 4 2-2 氧化鋅奈米線的成長方法 7 2-2-1 化學氣相沉積法 7 2-2-2 水熱法 10 2-3電化學阻抗頻譜分析 14 2-3-1 阻抗頻譜分析原理 14 2-3-2 等效電路模擬原理 18 2-4 空間電荷區與載子濃度的計算 21 2-4-1 空間電荷區 21 2-5 微接觸法的發展過程 27 2-6 奈米線材的積體化 28 2-6-1微流體管道法 28 2-6-2 介電泳排列奈米線 29 2-6-3 旋轉加壓法 31 第三章、實驗方法與步驟 32 3-1實驗流程圖 32 3-2實驗藥品與設備儀器 33 3-2-1 藥品/耗材名稱 33 3-2-2 實驗設備 38 3-2-3 分析儀器 39 3-3-1 清洗ITO玻璃基板 47 3-3-2晶種層(seed layer)的製備 48 3-3-3 水熱法批次成長氧化鋅奈米線 48 3-3-4 使用交流阻抗法進行氧化鋅奈米線的電性測量 49 3-3-5 利用微接觸法轉印指叉狀電極並進行奈米線排列 50 第四章、結果與討論 55 4-1 氧化鋅奈米線製備與探討 55 4-1-1 水熱法批次成長氧化鋅奈米線之特性 55 4-1-2 添加聚乙基亞胺或氨水對氧化鋅奈米柱線成長之影響 60 4-2 氧化鋅奈米線之液相交流阻抗電性分析 75 4-2-1 等效電路的設定 75 4-2-2 氧化鋅奈米線之電性探討 81 4-3 以微接觸法進行微圖形的金屬轉移 89 第五章、結論 95 第六章、參考文獻 97

1. S. Iijima, Nature 354 (6348), 56-58 (1991).
2. S. K. Jha, C. P. Liu, Z. H. Chen, K. J. Chen, I. Bello, J. A. Zapien, W. Zhang and S. T. Lee, The Journal of Physical Chemistry C 114 (17), 7999-8004 (2010).
3. L. Mazeina, F. K. Perkins, V. M. Bermudez, S. P. Arnold and S. Prokes, Langmuir, 103102 (2010).
4. Y. Cui, Q. Wei, H. Park and C. M. Lieber, Science 293 (5533), 1289 (2001).
5. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim and C. M. Lieber, Science 294 (5545), 1313 (2001).
6. Y. Liu, J. H. Chung, W. K. Liu and R. S. Ruoff, The Journal of Physical Chemistry B 110 (29), 14098-14106 (2006).
7. G. Zhu, R. Yang, S. Wang and Z. L. Wang, Nano Lett. 10 (8), 3151-3155 (2010).
8. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang and Z. L. Wang, Nature Nanotechnology 5 (5), 366-373 (2010).
9. R. Khan, H. W. Ra, J. Kim, W. Jang, D. Sharma and Y. Im, Sensors and Actuators B: Chemical (2010).
10. O. Lupan, V. Ursaki, G. Chai, L. Chow, G. Emelchenko, I. Tiginyanu, A. Gruzintsev and A. Redkin, Sensors and Actuators B: Chemical 144 (1), 56-66 (2010).
11. S. N. Das, J. P. Kar, J. H. Choi, T. I. Lee, K. J. Moon and J. M. Myoung, The Journal of Physical Chemistry C 114 (3), 1689-1693 (2010).
12. M. W. Chen, C. Y. Chen, D. H. Lien, Y. Ding and H. He Jr, Opt. Express 18 (14), 14836-14841 (2010).
13. R. Yang, Y. Qin, L. Dai and Z. L. Wang, Nature Nanotechnology 4 (1), 34-39 (2008).
14. X. Wang, J. Song, P. Li, J. H. Ryou, R. D. Dupuis, C. J. Summers and Z. L. Wang, J. Am. Chem. Soc. 127 (21), 7920-7923 (2005).
15. X. Sun, X. Chen, Z. Deng and Y. Li, Mater. Chem. Phys. 78 (1), 99-104 (2003).
16. Y. Sun and N. A. George, Chem. Phys. Lett. 431 (4-6), 352-357 (2006).
17. L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun and P. Yang, Inorg. Chem. 45 (19), 7535-7543 (2006).
18. J. Qiu, X. Li, F. Zhuge, X. Gan, X. Gao, W. He, S. J. Park, H. K. Kim and Y. H. Hwang, Nanotechnology 21, 195602 (2010).
19. D. Look, D. Reynolds, J. Sizelove, R. Jones, C. Litton, G. Cantwell and W. Harsch, Solid State Commun. 105 (6), 399-401 (1998).
20. S. M. Peng, Y. K. Su, L. W. Ji, C. Z. Wu, W. B. Cheng and W. C. Chao, The Journal of Physical Chemistry C 114 (7), 3204-3208 (2010).
21. S. P. Anthony, J. I. Lee and J. K. Kim, Appl. Phys. Lett. 90 (10), 103107 (2007).
22. Y. H. Leung, Z. B. He, L. B. Luo, C. H. A. Tsang, N. B. Wong, W. J. Zhang and S. T. Lee, Appl. Phys. Lett. 96 (5), 053102 (2010).
23. J. B. K. Law and J. T. L. Thong, Appl. Phys. Lett. 88 (13), 133114 (2006).
24. X. Fang, J. Li, D. Zhao, D. Shen, B. Li and X. Wang, The Journal of Physical Chemistry C 113 (50), 21208-21212 (2009).
25. R. Konenkamp, R. Word and M. Godinez, Nano Lett. 5 (10), 2005-2008 (2005).
26. A. B. Djurišić and Y. H. Leung, Small 2 (8-9), 944-961 (2006).
27. C. Tay, S. Chua and K. Loh, J. Cryst. Growth 311 (5), 1278-1284 (2009).
28. P. C. Chen, S. Sukcharoenchoke, K. Ryu, L. Gomez de Arco, A. Badmaev, C. Wang and C. Zhou, Adv. Mater. 22 (17), 1900-1904 (2010).
29. L. C. Tien, P. W. Sadik, D. P. Norton, L. F. Voss, S. J. Pearton, H. T. Wang, B. S. Kang, F. Ren, J. Jun and J. Lin, Appl. Phys. Lett. 87 (22), 222106 (2005).
30. C. Soci, A. Zhang, B. Xiang, S. Dayeh, D. Aplin, J. Park, X. Bao, Y. Lo and D. Wang, Nano Lett. 7 (4), 1003-1009 (2007).
31. Z. Fan and J. G. Lu, Journal of nanoscience and nanotechnology 5 (10), 1561-1573 (2005).
32. P. C. Chang, Z. Fan, D. Wang, W. Y. Tseng, W. A. Chiou, J. Hong and J. G. Lu, Chem. Mater. 16 (24), 5133-5137 (2004).
33. T. J. Kuo, C. N. Lin, C. L. Kuo and M. H. Huang, Chem. Mater. 19 (21), 5143-5147 (2007).
34. S. W. Kim and S. Fujita, Appl. Phys. Lett. 86, 153119 (2005).
35. J. Liu, M. Yu and W. Zhou, Appl. Phys. Lett. 87, 172505 (2005).
36. W. I. Park, D. Kim, S. W. Jung and G. C. Yi, Appl. Phys. Lett. 80, 4232 (2002).
37. L. Y. Chen, S. H. Wu and Y. T. Yin, The Journal of Physical Chemistry C 113 (52), 21572-21576 (2009).
38. H. Okamoto and T. Massalski, Journal of Phase Equilibria 10 (1), 59-69 (1989).
39. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H. J. Choi, Adv. Funct. Mater. 12 (5), 323 (2002).
40. L. Vayssieres, Adv. Mater. 15 (5), 464-466 (2003).
41. Z. Qiu, K. Wong, M. Wu, W. Lin and H. Xu, Appl. Phys. Lett. 84 (15), 2739-2741 (2004).
42. J. Zhang, L. Sun, H. Pan, C. Liao and C. Yan, New J. Chem. 26 (1), 33-34 (2002).
43. Y. Jiang and N. Bahlawane, The Journal of Physical Chemistry C 114 (11), 5121-5125 (2010).
44. J. Song and S. Lim, The Journal of Physical Chemistry C 111 (2), 596-600 (2007).
45. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally and P. Yang, Angew. Chem. Int. Ed. 42 (26), 3031-3034 (2003).
46. M. A. Verges, A. Mifsud and C. Serna, J. Chem. Soc., Faraday Trans. 86 (6), 959-963 (1990).
47. K. Govender, D. S. Boyle, P. B. Kenway and P. O'Brien, J. Mater. Chem. 14 (16), 2575-2591 (2004).
48. Y. Sun, D. J. Riley and M. N. R. Ashfold, The Journal of Physical Chemistry B 110 (31), 15186-15192 (2006).
49. Y. Tak and K. Yong, The Journal of Physical Chemistry B 109 (41), 19263-19269 (2005).
50. J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu and L. D. Chen, Appl. Phys. Lett. 84 (4), 541 (2004).
51. J. M. Bian, X. M. Li, C. Y. Zhang, W. D. Yu and X. D. Gao, Appl. Phys. Lett. 85 (18), 4070 (2004).
52. J. J. Wu and D. K. P. Wong, Adv. Mater. 19 (15), 2015-2019 (2007).
53. I. n. Mora-Sero, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. n. Tena-Zaera, J. Elias and C. Levy-Clement, Appl. Phys. Lett. 89 (20), 203117 (2006).
54. E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications. (LibreDigital, 2005).
55. A. Lasia, Modern aspects of electrochemistry 32, 143-248 (1999).
56. 黃鯤鵬, 以交流阻抗法量測高方向性氧化鋅奈米柱陣列電性之研究. (民國95年).
57. S. M. Sze and K. K. Ng, Physics of semiconductor devices. (Wiley-Blackwell, 2007).
58. A. W. Bott, Current Separations 17, 87-92 (1998).
59. R. Tena-Zaera, J. Elias, C. Le vy-Cle ment, C. Bekeny, T. Voss, I. Mora-Sero and J. Bisquert, The Journal of Physical Chemistry C 112 (42), 16318-16323 (2008).
60. W. G. Morris, Journal of Vacuum Science and Technology 13 (4), 926-931 (1976).
61. A. Kumar and G. M. Whitesides, Appl. Phys. Lett. 63 (14), 2002-2004 (1993).
62. Y. Xia and G. M. Whitesides, Angew. Chem. Int. Ed 37, 551!V571 (1998).
63. C. Kim, P. E. Burrows and S. R. Forrest, Science 288 (5467), 831 (2000).
64. S. R. Forrest, Nature 428 (6986), 911-918 (2004).
65. 許樹恩 and 吳泰伯, X光繞射原理與材料結構分析. (中國材料科學學會, 民國82年).
66. C. Wagner, W. Riggs and L. Davis, Handbook of X-ray photoelectron spectroscopy. (Perkin-Elmer Corporation, 1979).
67. K. Vanheusden, W. Warren, C. Seager, D. Tallant, J. Voigt and B. Gnade, J. Appl. Phys. 79 (10), 7983-7990 (1996).
68. X. Liu, X. Wu, H. Cao and R. Chang, J. Appl. Phys. 95, 3141 (2004).
69. L. Blok and P. Bruyn, J. Colloid Interface Sci. 32 (3), 518-526 (1970).
70. T. Damen, S. Porto and B. Tell, Physical Review 142 (2), 570 (1966).
71. M. Koyano and P. QuocBao, physica status solidi (a) 193 (1), 125-131 (2002).
72. J. N. Zeng, J. K. Low, Z. M. Ren, T. Liew and Y. F. Lu, Appl. Surf. Sci. 197, 362-367 (2002).
73. C. Youn, T. Jeong, M. Han and J. Kim, J. Cryst. Growth 261 (4), 526-532 (2004).
74. M. Kuball, Surf. Interface Anal. 31 (10), 987-999 (2001).
75. Z. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X. Yuan, T. Sekiguchi, R. Suzuki and T. Ohdaira, J. Appl. Phys. 97, 013528 (2005).
76. M. Tzolov, N. Tzenov, D. Dimova-Malinovska, M. Kalitzova, C. Pizzuto, G. Vitali, G. Zollo and I. Ivanov, Thin Solid Films 379 (1-2), 28-36 (2000).
77. A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann and B. K. Meyer, Appl. Phys. Lett. 80 (11), 1909 (2002).
78. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz and M. Grundmann, Appl. Phys. Lett. 83 (10), 1974 (2003).
79. J. Wang, G. Du, B. Zhao, X. Yang, Y. Zhang, Y. Ma, D. Liu, Y. Chang, H. Wang, H. Yang and S. Yang, J. Cryst. Growth 255 (3-4), 293-297 (2003).
80. C. L. Perkins, S.-H. Lee, X. Li, S. E. Asher and T. J. Coutts, J. Appl. Phys. 97 (3), 034907 (2005).
81. C. Lin, H. Chen and S. Chen, Chem. Phys. Lett. 404 (1-3), 30-34 (2005).
82. X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang and Y. Li, Nano Lett. 9 (6), 2331-2336 (2009).

QR CODE