簡易檢索 / 詳目顯示

研究生: 陳冠榮
Guan-Rong Chen
論文名稱: 微波輔助釓摻雜CuInS2水相量子點製備及其生醫應用
Rapid microwave-assisted synthesis of Gd-doped CuInS2/ZnS quantum dots for cancer specific dual-modal imaging
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 蔡伸隆
Shen-Long Tsai
李介仁
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 153
中文關鍵詞: 水相量子點螢光顯影核磁共振攝影生物應用
外文關鍵詞: Aqueous quantum dots, Bio applicaitons, Magnetic resonance, Specific cancer cell targeting agent
相關次數: 點閱:311下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文結合了奈米合成技術與生物醫學應用,將低毒性之量子點應用於細胞體及活體上,成功開發出且具有低毒性、低成本且合成時間短、高量子效率、螢光顯影標靶、核磁共振之多功能量子點材料。

第一部分:使用微波輔助法成功地將Gd鑭系金屬元素摻雜於以水為溶劑合成CuInS2/ZnS(CIGS)核殼結構量子點中,並藉由優化Cu、In與Gd等前驅物比例,提高量子點之量子產率,以及使用雙穩定劑L-glutathione與Citric acid trisodium salt使量子點能夠在水中穩定地合且並以不同溫度和時間作為主要的參數調整,接著在同樣合成系統中,將Gd置換成Zn、Cd、Al、Ga不同金屬元素,再以TEM、XRD、UV、PL、EPR、ICP、FTIR及Life time進行摻雜量子點的組成、結構、光學性質與磁性分析。結果中發現Gd確實能以摻雜的方式與CuInS2/ZnS(CIS)量子點結合展現出順磁特性以及摻雜其它金屬元素能有不同放光。

第二部分:以Gd摻雜量子點作為基礎材料,利用EDC/ Sulfo-NHS共價交聯系統將量子點功能化,使用葉酸(Folic acid)及胺基苯硼酸(3-aminophenylboronicacid)雙重修飾於量子點表面以提高生物相容性,使其能與HeLa癌細胞表面的葉酸受之間有良好的親和力以及易與細胞上聚醣體(glycans)表面之唾液酸(Sialic acid、SA)受體反應。在雙重修飾下,量子點成為具有選擇性標靶並以共軛焦距顯微鏡偵測材料於Hela細胞體內之顯影效果。 此外,我們將功能化量子點作為奈米藥物載體,利用抗癌藥物DOX與量子點中Zn2+離子之配位關係,將DOX裝載於量子點上。我們證明了水相CIGS量子點具有螢光標靶、核磁顯影成像、藥物載體等功能,並將量子點應用於生物影像方面與斑馬魚活體實驗。


We present a facile microwave-assisted synthetic route for the preparation of water-soluble and high-quality Gd doped CuInS2/ZnS quantum dots (CIGS/ZnS QDs) with glutathione (GSH) and Citric acid trisodium salt (SC) as the duel stabilizer. The as-prepared CuInS2/ZnS QDs exhibited small particle sizes (~2.5 nm), long photoluminescence lifetime, and color-tunable properties ranging from the 541 nm to the 570 nm by varying the synthesis temperature. We also replaced Zn, Cd, Al, Ga elements instead of Gd, all are shown fluorescence and the optical wavelength range from 540 nm to the 582 nm. While the CIGS/ZnS QDs used as a specific targeting material on cancer cells, they also feature magnetic resonance active on the nanoparticles.
To demonstrate their potential biomedical application, we use 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and n-hydroxysulfosuccinimide (Sulfo-NHS) to conjugate both folic acid (FA) and 3-aminophenylboronicacid complexes (APBA) with CIGS/ZnS QDs as cancer targeting agents. The cellular up-taking process happened by the formation of cyclic boronate ester with sialic acid on the membrane of cell and folate-receptors. Confocal imaging characterization revealed that functionalized CIGS/ZnS QDs could target specifically and effectively on HeLa cells. Also CIGS/ZnS QDs that contains gadolinium ions will feature magnetic resonance active on the nanoparticles. Finally, the cancer drug doxorubicin (DOX) can load onto the functionalized CIGS/ZnS QDs by formation of metal complexes with Zn2+ on the QDs. It is the evidence that CIGS/ZnS QDs can be a specific cancer cell targeting agent.

摘要 致謝 Abstract 總目錄 表目錄 圖目錄 第一章 緒論 1.1 前言 1.2 研究動機與內容 第二章 理論基礎與文獻回顧 2.1奈米半導體材料之光學特性與理論 2.1.1表面效應 2.1.2量子尺寸效應 2.1.3奈米晶體之能隙和量子侷限效應 2.1.4半導體奈米晶體的載子躍遷機制 2.2 量子點發展與應用 2.2.1傳統油相量子點之發展與文獻回顧 2.2.2水相量子點發展 2.2.3水相量子點合成方法 2.2.4 水相I-III-VI族之量子點及I-III-VI族殼核層(Core-shell)量子點簡介 2.2.5量子點於靶向性功能化與生物應用 2.2.6量子點之相關應用 2.3 磁性量子點介紹與應用 2.3.1磁性量子點合成種類 2.3.2釓原子摻雜於量子點的發展 2.3.3核磁共振影像(MRI)成像原理及影像劑的作用 第三章 實驗方法與原理 3.1 實驗藥品 3.2 實驗測量儀器 3.3 實驗步驟 3.3.1水相CIGS量子點合成 3.3.2水溶性硫化鋅(ZnS)製備 3.3.3水相CIGS/ZnS量子點合成 3.3.4水相量子點CIGS/ZnS與3-氨基苯硼酸與葉酸鍵結之合成 3.4 細胞培養 3.5 Confocal試片製作 3.6 樣品分析 第四章 實驗結果與討論 4.1 I-III-VI族CIGS水相量子點合成介紹 4.1.1 合成CIGS水相量子點實驗介紹及在不同溫度下及時間之量子產最佳化率探討 4.1.2 CIGS水相量子點在Cu與In前驅物參數調整之量子產率最佳化探討 4.1.3水相量子點之雙配位劑比例之量子產率最佳化探討 4.1.4CIGS水相量子點不同Gd濃度之光學性質鑑定 4.2 I-III-VI族Gd doped-CIS/ZnS核殼水相量子點合成與製備 4.2.1 CIGS/ZnS水相量子點實驗設計 4.2.2合成CIGS/ZnS水相量子點之參數調整之量子產率最佳化 4.2.3 CIGS/ZnS水相量子點結構性質分析 4.2.4 CIGS/ZnS水相量子點光學分析與穩定性測試 4.3 不同濃度的Gd原子摻雜於CIS/ZnS殼核結構水相量子點之光學性質、磁性探討 4.3.1 CIGS/ZnS水相量子點EPR光譜鑑定 4.3.2 CIGS/ZnS量子點光學性質鑑定 4.3.3 CIGS/ZnS水相量子點之核磁共振分析 4.4 CICdS、CIZnS、CIGaS與CIAlS水相量子點之合成與探討 4.4.1 CICdS、CIZnS、CIGaS與CIAlS水相量子量光學性質探討 4.4.2 CICdS、CIZnS、CIGaS與CIAlS水相量子量特性分析 4.5 CIGS/ZnS水相量子點表面功能化之修飾介紹 4.5.1 CIGS/ZnS水相量子點與葉酸(FA)及苯硼酸(APBA)之耦合與介紹 4.5.2 CIGS/ZnS@APBA|FA水相量子點之功能化合成之鑑定分析 4.5.3 CIGS/ZnS水相量子點功能化於癌細胞生物影像顯影應 4.6 材料分析對細胞之毒性測試介紹 4.6.1 CIGS/ZnS水相量子點對細胞之毒性測試 4.6.2 水相CdTe量子點之製備與比較分析對細胞之毒性測試 4.7 功能化CIGS/ZnS@FA|APBA水相量子點作為藥物載體之鑑定分析 4.8 CIGS/ZnS & CIGS/ZnS-FA-APBA於斑馬魚活體測試 第五章 結論與未來展望 參考文獻

[1] J. Zhang, R. G. Xie and W. S. Yang, Chem. Mater., 2011, 23, 3357
[2] S. Sarkar, N. S. Karan and N. Pradhan, Angew. Chem. Int. Ed., 2011, 50, 6065
[3] J. Feng, M. Sun, F. Yang and X. R. Yang, Chem. Commun.,2011, 47, 6422
[4] E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal and B. Dubertret, Chem. Mater., 2010, 22, 6117
[5] G. Manna, S. Jana, R. Bose and N. Pradhan, J. Phys. Chem. Lett., 2012, 3, 2528
[6] 羅吉宗編撰,奈米科技導論,全華圖書股份有限公司,台灣
[7] 王慧中, 有機光電材料修飾之硒化鎘奈米粒子的合成急性質研究, 國立中央大學化學研究所, 碩士論文, 2004
[8] G. Sun,The Intersubband Approach to Si-based Lasers,Advances in Lasers and Electro Optics,Nelson Costa and Adolfo Cartaxo (Ed.),2010
[9] Zeshan Leng, Liang Huang, Feng Shao, Zhicheng Lv, Tingting Li, Xiaoxu Gu, Heyou Han, Materials Letters, 2014, 119, 100
[10] X. Peng, L. Manna, W. Yang, J. Wickham, E. C. Scher, A. Kadavanich and A. P. Alivisatos, Nature, 2000, 404, 59
[11] W. C. W. Chan, S. Nie, Science, 1998, 281, 2016
[12] X. Peng, L. Manna, W. Yang, J. Wickham, E. C. Scher, A. Kadavanich and A. P. Alivisatos, Nature, 2000, 404, 59
[13] M. Hines, Guyot-Sionnest, J. Phys. Chem., 1996, 100, 468
[14] B.O. Dabbousi , J. Rodriguez-Viejo , F. V. Mikulec , J. R. Heine , H. Mattoussi , R. Ober , K. F. Jensen , and M. G. Bawendi , J. Phys. Chem. B, 1997, 101, 9463
[15] Shailaja Mahamuni, K. Borgohain, B. S. Bendre, Valerie J. Leppert, and Subhash H. Risbud, J. Appl. Phys.,1999, 85, 2861
[16] Michal Danek , Klavs F. Jensen, Chris B. Murray, and Moungi G. Bawendi, Chem. Mater., 1996, 8 ,173
[17] G. Karczewski, S. Maćkowski, M. Kutrowski, T. Wojtowicz and J. Kossut, Appl. Phys. Lett.,1999, 74, 3011
[18] R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, Phys. Rev. Lett., 1994, 72, 416
[19] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, Science, 2005, 307, 538.
[20] R. Xie, M. Rutherford, and X. Peng, J. Am. Chem. Soc., 2009, 131, 5691.
[21] B.-K. Pong, B. L. Trout, and J.-Y. Lee, Langmuir, 2008, 24, 5270.
[22] S. Gupta, P. Uhlmann, M. Agrawal, V. Lesnyak, N. Gaponik, F. Simon, M. Stamm and A. Eychmuller, J. Am. Chem. Soc., 2007, 129, 2871
[23] X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung and S. Nie, Nat. Biotechnol., 2004, 22, 969
[24] D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, J. Phys. Chem. B, 2001, 105, 8861.
[25] R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donegá, D. C. Hart, A. van Blaaderen, D. Vanmaekelbergh and A. Meijerink, Chem. Mater., 2008, 20, 2503
[26] M. Z. Fahmi and J.-Y. Chang, Nanoscale, 2013, 5, 1517-1528.
[27] Siyu Liu, Fanping Shi, Lu Chen, Xingguang Su, Sensors and Actuators B, 2014, 191, 246
[28] Siyu Liu, Fanping Shi, Lu Chen, Xingguang Su, Talanta, 2013, 116, 870
[29] Siyu Liu, Fanping Shi, Lu Chen and Xingguang Su, Analyst, 2013, 138, 5819
[30] Yanyan Chen, Shenjie Li, Lijian Huang and Daocheng Pan, Nanoscale, 2014, 6, 1295
[31] Wei-Wei Xiong, Guo-Hai Yang, Xing-Cai Wu, and Jun-Jie Zhu, ACS Appl. Mater. Interfaces, 2013, 16, 8210
[32] Qingshuang Liang, Yijia Bai, Lin Han, Xiaolong Deng, Xiaojie Wu, Zhongchang Wang, Xiaojuan Liu, Jian Meng, Journal of Luminescence, 2013, 143, 185
[33] Ziping Liu, Guangying Li, Qiang Ma, Linlin Liu, Xingguang Su, springer, 2014, 181, 1385
[34] Michelle D. Regulacio, Khin Yin Win,a Seong Loong Lo, Shuang-Yuan Zhang, Xinhai Zhang, Shu Wang,bc Ming-Yong Han and Yuangang Zheng, Nnoscale, 2013, 5, 2322
[35] Vladimir Lesnyak,z Nikolai Gaponik and Alexander Eychmuller, Chem. Soc. Rev.,2013, 42, 2905
[36] T. Vossmeyer , L. Katsikas , M. Giersig , I. G. Popovic , K. Diesner , A. Chemseddine , A. Eychmueller , H. Weller, J. Phys. Chem., 1994, 31, 7665
[37] Michelle D. Regulacio, Khin Yin Win, Seong Loong Lo, Shuang-Yuan Zhang, Xinhai Zhang, Shu Wang, Ming-Yong Han and Yuangang Zheng, Nanoscale, 2013, 5, 2322
[38] Ajoy K. Saha, Parvesh Sharma, Han-Byul Sohn, Siddhartha Ghosh, Ritesh K. Das, Arthur F. Hebard, Huadong Zeng, Celine Baligand, Glenn A. Waltere and Brij M. Moudgil, J. Mater. Chem. B, 2013, 1, 6312
[39] Guo-Yu Lan, Yang-Wei Lin, Yu-Fen Huang and Huan-Tsung Chang, J. Mater. Chem., 2007, 17, 2661
[40] Yinglian Zhu, Chunsheng Li, Ying Xu, Dongfeng Wanga, Journal of Alloys and Compounds, 2014, 608 ,141
[41] Wei-Wei Xiong, Guo-Hai Yang, Xing-Cai Wu, and Jun-Jie Zhu, ACS Appl. Mater. Interfaces, 2013
[42] P. M. Allen and M. G. Bawendi, J. Am. Chem. Soc., 2008, 130, 9240.
[43] R. G. Xie, M. Rutherford and X. G. Peng, J. Am. Chem. Soc.,2009, 131, 5691
[44] J. Park and S. W. Kim, J. Mater. Chem., 2011, 21, 3745
[45] J. Y. Chang, G. Q. Wang, C. Y. Cheng, W. X. Lin and J. C. Hsu, J. Mater. Chem., 2012, 22, 10609
[46] B. K. Chen, H. Z. Zhong and B. S. Zou, Prog. Chem., 2011, 23, 2276.
[47] X. Yuan, J. L. Zhao, P. T. Jing, W. J. Zhang, H. B. Li, L. G. Zhang, X. H.
[48] X. L. Wang, D. C. Pan, D. Weng, C. Y. Low, L. Rice, J. Y. Han and Y. F. Lu, J. Phys. Chem. C, 2010, 114, 17293
[49] D. C. Pan, X. L. Wang, Z. H. Zhou, W. Chen, C. L. Xu and Y. F. Lu, Chem. Mater., 2009, 21, 2489
[50] P. C. Dai, X. N. Shen, Z. J. Lin, Z. Y. Feng, H. Xu and J. H. Zhan, Chem. Commun., 2010, 46, 5749
[51] Q. H. Liu, Z. C. Zhao, Y. H. Lin, P. Guo, S. J. Li, D. C. Pan and X. L. Ji, Chem. Commun., 2011, 47, 964
[52] K. T. Yong, I. Roy, R. Hu, H. Ding, H. X. Cai, J. Zhu, X. H. Zhang, E. J. Bergey and P. N. Prasad, Integr. Biol., 2010, 2, 121
[53] T. Pons, E. Pic, N. Lequeux, E. Cassette, L. Bezdetnaya, F. Guillemin, F.Marchal and B. Dubertret, ACS Nano, 2010, 4, 2531
[54] Wenjin Zhang, Qing Lou, Wenyu Ji, Jialong Zhao, and Xinhua Zhong, Chem. Mater., 2014, 26, 1204
[55] H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki and H. Maeda, Chem. Mater., 2006, 18, 3330
[56] Z. Feng, P. Dai, X. Ma, J. Zhan, Z. Lin, Appl. Phys. Lett., 2010, 96, 013104
[57] W. Zhang and X. Zhong, Inorg. Chem., 2011, 50, 4065
[58] Wenjin Zhang, Qing Lou, Wenyu Ji, Jialong Zhao, and Xinhua Zhong, Chem. Mater., 2014, 26, 1204
[59] Haizheng Zhong, Zelong Bai, and Bingsuo Zou, J. Phys. Chem. Lett., 2012, 3, 3167
[60] T. Omata, K. Nose, and S. Otsuka-Yao-Matsuo, J. Appl. Phys., 2009, 105, 73106
[61] W. J. Parak, R. Boudreau, M. L. Gros, D. Gerion, D. Zanchet, C. M. Micheel, S. C. Williams, A. P. Alivisatos and C. Larabell, Adv. Mater., 2002, 14, 882
[62] Ki Su Kim, Wonhee Hur, Sang-Jun Park, Sung Woo Hong, Jung Eun Choi, Eun Ji Goh, Seung Kew Yoon, and Sei Kwang Hahn†, ACS Nano, 2010, 4, 3005
[63] Chun-Lin Huang, Chih-Ching Huang, Fu-Der Mai, Chia-Liang Yen,
Shin-Hwa Tzing, Hsiao-Ting Hsieh, Yong-Chien Lingd and Jia-Yaw Chang, J. Mater. Chem. B, 2015, 3, 65
[64] D. J. Bharali, D. W. Lucey, H. Jayakumar, H. E. Pudavar, and P. N. Prasad, J. Am. Chem. Soc., 2005, 127, 11364
[65] K. D,Mielenz. Optical Radiation Measurements, New York, Academic Press,1982
[66] A. Liu, S. Peng, J. C. Soo, M. Kuang, P. Chen, and H. Duan, Analytical Chemistry, 2011, 83, 1124
[67] W. Zhang, X. W. He, Y. Q. Yang, W.Y. Li and Y. K Zhang, J. Mater. Chem. B, 2013, 1, 347
[68] W. T. Wu, T. Zhou, A. Berliner, P. Banerjee and S. Q. Zhou, Angew. Chem. Int. Ed., 2010, 49, 1
[69] Q. Ma, E. Ha, F. P. Yang and X. G. Su, Anal. Chim. Acta, 2011, 701, 60
[70] Y. Gao, H. Huang, J. J. Hu, S. M. Shah and X. G. Su, Talanta,2011, 85, 1075
[71] S. Liu, F. Shi, L. Chen and X. Su, Analyst, 2013, 138, 5819
[72] S. Liu, F. Shi, L. Chen and X. Su, Talanta, 2013, 116, 870
[73] P. O. Anikeeva, J. E. Halpert, M. G. Bawendi and V. Bulović, Nano Letters, 2009, 9, 2532
[74] http://www.qled-info.com/introduction/, 2014/4/23
[75] Han MY, Gao X, Su JZ, Nie SM, Nat Biotechnol, 2001, 19, 631
[76] H. Kim , M. Achermann , L. P. Balet , J. A. Hollingsworth , V. I. Klimov , J. Am. Chem. Soc., 2005, 127, 544
[77] J. H. Gao , B. Zhang , Y. Gao , Y. Pan , X. X. Zhang , B. Xu , J. Am., Chem. Soc., 2007, 129, 11928
[78] Z. Q. Tian , Z. L. Zhang , P. Jiang , M. X. Zhang , H. Y. Xie , D. W. Pang, Chem. Mater., 2009, 21, 3039
[79] J. S. Lee , M. I. Bodnarchuk , E. V. Shevchenko , D. V. Talapin , J. Am., Chem. Soc., 2010, 132, 6382
[80] H. W. Gu , R. K. Zheng , X. X. Zhang , B. Xu , J. Am., Chem. Soc., 2004, 126, 5664
[81] S. L. He , H. W. Zhang , S. Delikanli , Y. L. Qin , M. T. Swihart , H. Zeng, J. Phys. Chem. C, 2009, 113, 87
[82] K. W. Kwon , M. Shim , J. Am., Chem. Soc. 2005, 127,10269
[83] S. T. Selvan, P. K. Patra, C. Y. Ang, J. Y. Ying, Angew. Chem., 2007, 119, 2500 ; Angew. Chem. Int. Ed., 2007, 46, 2448
[84] J. H. Gao, W. Zhang, P. B. Huang, B. Zhang, X. X. Zhang, B. Xu , J. Am., Chem. Soc., 2008, 130, 3710
[85] D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou , D. Kundaliya, J. Y. Ying , J. Am., Chem. Soc. 2005, 127 ,4990
[86] R. He, X. G. You, J. Shao, F. Gao, B. F. Pan , D. X. Cui, Nanotechnology, 2007, 18
[87] V. Salgueiriño-Maceira, M. A. Correa-Duarte, M. Spasova, L. M. Liz-Marzán , M. Farle , Adv. Funct. Mater., 2006, 16, 509
[88] J. Kim, J. E. Lee, J. Lee, J. H. Yu, B. C. Kim, K. An, Y. Hwang, C. H. Shin, J. G. Park, J. Kim , T. Hyeon, J. Am. Chem. Soc., 2006, 128, 688
[89] J. Guo, W. L. Yang, C. C. Wang, J. He, J. Y. Chen, Chem. Mater., 2006, 18, 5554
[90] N. Insin, J. B. Tracy, H. Lee, J. P. Zimmer, R. M. Westervelt, M. G. Bawendi, ACS Nano, 2008, 2, 197
[91] H. M. Fan, M. Olivo, B. Shuter, J. B. Yi, R. Bhuvaneswari, H. R. Tan , G. C. Xing , C. T. Ng , L. Liu , S. S. Lucky , B. H. Bay ,J. Ding , J. Am., Chem. Soc., 2010, 132, 14803
[92] T. Jin, Y. Yoshioka, F. Fujii, Y. Komai, J. Seki, A. Seiyama, Chem. Commun., 2008, 5764
[93] L. W. Liu, W. C. Law, K. T. Yong, I. Ro , H. Ding, F. Erogbogbo, X. H. Zhang, P. N. Prasad, Analyst, 2011, 136, 1881
[94] J. Zhu, J. Zhou, D. X. Wei, S. Y. Liu, CrystEngComm, 2013, 15, 6221
[95] C. Y. Cheng, K. L. Ou, W. T. Huang, J. K. Chen, J. Y. Chang, C. H. Yang , ACS Appl. Mater. Interfaces, 2013, 5, 4389
[96] G. J. Stasiuk, S. Tamang, D. Imbert, C. Poillot, M. Giardiello, C. Tisseyre, E. L. Barbier, P. H. Fries, M. de Waard, P. Reiss, M. Mazzanti, ACS Nano 2011, 5, 8193
[97] G. J. Stasiuk, S. Tamang, D. Imbert, C. Gateau, P. Reiss, P. Fries, M. Mazzanti, Dalton Trans, 2013, 42, 8197
[98] J. Park, S. Bhuniya, H. Lee, Y. W. Noh, Y. T. Lim, J. H. Jung, K. S. Hong, J. S. Kim, Chem. Commun. 2012, 48, 3218
[99] L. Prinzen, R. J. J. H. M. Miserus, A. Dirksen, T. M. Hackeng, N. Deckers , N. J. Bitsch , R. T. A. Megens , K. Douma, J. W. Heemskerk , M. E. Kooi , P. M. Frederik , D. W. Slaaf, M. A. M. J. van Zandvoort , C. P. M. Reutelingsperger, Nano Lett., 2007, 7, 93
[100] G. M. Dalpian and J. R. Chelikowsky, Phys. Rev. Lett., 2006, 96, 226802
[101] A. Nag, S. Chakraborty and D. D. Sarma, J. Am. Chem. Soc., 2008, 130, 10605
[102] P. Wu and X.-P. Yan, Chem. Soc. Rev., 2013, 42, 5489
[103] D. J. Norris, N. Yao, F. T. Charnock and T. A. Kennedy, Nano Lett., 2000, 1, 3
[104] N. Pradhan, D. Goorskey, J. Thessing and X. Peng, J. Am. Chem. Soc., 2005, 127, 17586
[105] Y. Yang, O. Chen, A. Angerhofer and Y. C. Cao, J. Am. Chem. Soc., 2006, 128, 12428
[106] N. Pradhan and D. D. Sarma, J Phys Chem Lett, 2011, 2, 281
[107] Yanlan Liu, Kelong Ai a, Qinghai Yuan, Lehui Lu, Biomaterials, 2011, 32, 1185
[108] Weisheng Guo, Weitao Yang, Yu Wang, Xiaolian Sun, Zhongyun Liu, Bingbo Zhang, Jin Chang, and Xiaoyuan Chen, Nano, 2013, 7, 1581
[109] LIU Yang2, LI Dongze, ZHANG Ying, LIU Zhihui and XIE Renguo, Chem. Res., 2015, 31, 1
[110] Fei Zhang, Ting-Ting Sun, Yan Zhang, Qiong Li, Chao Chai, Li Lu, Wen Shen, Jun Yang, Xi-Wen He, Yu-Kui Zhangad and Wen-You Li, J. Mater. Chem. B, 2014, 2, 7201
[111] Yang Xu, Xiao-Hua Jia, Xue-Bo Yin, Xi-Wen He, and Yu-Kui Zhang, Anal. Chem., 2014, 86, 12122
[112] J. Cheno, and J. Lee, Acc. Chem. Res., 2008, 41, 1630
[113] A. Rockett and R. W. Birkmire., J. Apply Phys, 1991, 70, 81
[114] K. Nose, T. Omata and S. Otsuka-Yao-Matsuo, J. Phys. Chem. C, 2009, 113, 3455
[115] S. B. Zhang, S. H. Wei and A. Zunger, Phys. Rev. B, 1998, 57, 9642
[116] Yanyan Chen, Shenjie Li, Lijian Huang, and Daocheng Pan, Inorg. Chem., 2013, 52, 7819
[117] R. G. Pearson, J. Am. Chem. Soc. 1963, 85, 3533
[118] K. T. Kuo, S. Y. Chen, B. M. Cheng and C. C. Lin, Thin Solid Films, 2008, 517, 1257
[119] J. Park and S. W. Kim, J. Mater. Chem., 2011, 21, 3745
[120] Y. Chen, S. Li, L. Huang and D. Pan, Nanoscale, 2014, 6, 1295
[121] Dawei Deng, Jie Cao,a Lingzhi Qu, Samuel Achilefu and Yueqing Gu, Phys.Chem. Chem. Phys., 2013, 15, 5078
[122] Xiangming Liu, JintaoTian n, JinhuiDai, XinWang, Physica E, 2014, 57, 56
[123] Bingxin Liu, Cuiyan Tong, Lijuan Feng, Chunyu Wang, Yao He, and Changli L, Chem. Eur. J., 2014, 20, 2132
[124] Fabien Pinaud, Xavier Michalet, Laurent A. Bentolila, James M. Tsay, Soren Doose, Jack J. Li, Gopal Iyer, Shimon Weiss, Biomaterials, 2006, 27 1679
[125] Andrew J. Sutherland, Current Opinion in Solid State and Materials Science, 2002, 6, 365
[126] Ru-Qiang Liang, Wei Li1, Yang Li1, Cui-yan Tan, Jian-Xun Li, You-Xin Jin, and Kang-Cheng Ruan, Nucleic Acids Research, 2005, 33, 2
[127] Rajesh Komban, Johann P. Klare, Benjamin Voss, Jçrg Nordmann, Heinz-Jrgen Steinhoff, and Markus Haase, Angew., Chem. Int. Ed. 2012, 51, 6506
[128] S. Sadhu and A. Patra, J. Phys. Chem. C, 2012, 116, 15167
[129] W.-D. Xiang, H.-L. Yang, X.-J. Liang, J.-S. Zhong, J. Wang, L. Luo and C.-P. Xie, J. Mater. Chem. C, 2013, 1, 2014
[130] J. Appl. Phys. 2009, 105, 073106
[131] H Zhong, Z Bai, B Zou, J. Phys. Chem. Lett. 2012, 3, 3167
[132] Maxime A. Gilles, Antoine Q. Hudson, C.L. Borders Jr., Analytical Biochemistry, 1990, 184, 244
[133] H. M. Powell and S. T. Boyce, Biomaterials, 2006, 27, 5821
[134] Murray, C. B., Norris, D. J., Bawendi, M. G., J. Am. Chem. Soc., 1993, 115, 8706
[135] Qu, L. H., Peng, X. G., J. Am. Chem. Soc., 2002, 124, 2049.
[136] Xianglong Zhu, Zhenghuan Zhao, Xiaoqin Chi and Jinhao Gao, Analyst, 2013, 138, 3230
[137] Rogach, A. L., Franzl, T., Klar, T. A., Feldmann, J.,Gaponik, N., Lesnyak, V., Shavel, A., Eychmuller, A., Rakovich, Y. P., Donegan, J. F., J. Phys. Chem. C, 2007, 111, 14628
[138] F. Muhammad, M. Guo, Y. Guo, W. Qi, F. Qu, F. Sun, H. Zhaod and G. Zhu, J. Mater. Chem., 2011, 21, 13406
[139] Oberemm et al., 2000
[140] 中央研究院週報,第1050期
[141] Monte Westerfield, Institute of Neuroscience, 1993, 252, 231
[142] L. Truong, S. L. Harper and R. L. Tanguay, Methods Mol. Biol., 2011, 691, 271
[143] D. Rokhsar and S. Brenner, Science, 2002, 297, 1301
[144] S. L. Harper, J. L. Dahl, B. L. S. Maddux, R. L. Tanguay and J. E. Hutchison, Int. J. Nanotechnol., 2008, 5, 124
[145] D. B. Henken and R. S. Rasooly, Zebrafish, 2003, 1, 305
[146] A. L. Rubinstein, Curr Opin Drug Discov Devel., 2003, 6, 218

無法下載圖示 全文公開日期 2020/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE