簡易檢索 / 詳目顯示

研究生: 楊琇雯
Hsiu-wen Yang
論文名稱: 藉由自組裝改質多重響應高分子於仿生材料之應用
Modification of Stimuli-responsive Polymers by Self-assembling for Application in Biomimetic Materials
指導教授: 陳建光
Jem-kun Chen
口試委員: 邱顯堂
Hsien-Tang Chiu
吳國輝
Kuo-Hui Wu
黃智峯
none
黃啟賢
none
張棋榕
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 159
中文關鍵詞: 聚(氮-異丙基丙烯醯胺)超分子生物核鹼基聚甲基丙烯酸NN-二甲氨基乙酯聚電解質複合物
外文關鍵詞: poly(N"-dimethylaminoethyl methacrylate), nucleobase, Poly(N-isopropylacrylamide), Supramolecule
相關次數: 點閱:218下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來由於材料科技的迅速發展,傳統的有機材料已經無法滿足人類的需求,因此有越來越多研究將不同的材料透過各種不同的方式結合。科學技術的發展,要求材料要變得更能靈活應用以及能適應複雜環境的變化。由此概念所發展出具有刺激響應的仿生高分子材料已運用在許多生醫方面的應用。自然界生物為了維持生命與生理機能,生物體內的高分子與細胞必須隨著外在環境的變化來改變其化學性質與結構。
本研究中,我們利用高分子具有刺激響應之特性,並加以研究這些高分子自組裝氫鍵所製成的仿生材料:
(1) 溫感性高分子聚N-異丙基丙烯酰胺(PNIPAAm)多重氫鍵對腺嘌呤(adenine)的識別:
聚(氮-異丙基丙烯醯胺)(Ploy(N-isopropylacrylamide),PNIPAAm)具有溫度敏感性,能隨環境溫度變化而進行相對應的變化,為了製備具有溫敏性與生物相容性的複合材料,本研究透過氫鍵作用力將聚(氮-異丙基丙烯醯胺)/ 腺嘌呤(PNIPAAm/ adenine)自組裝氫鍵形成仿生複合材料,並探討PNIPAAm與adenine不同混摻比例對仿生複合材料氫鍵作用力與結合常數的影響,並使用升溫紅外線光譜(FTIR)來計算其氫鍵自組裝效能,也可以發現藉由動態散射光譜(DLS)量測其低臨界溶液溫度(Lower Critical Solution Temperature,LCST)會有所改變。利用廣角度X光繞射儀(WAXS)、穿透式電子顯微鏡(TEM)與掃瞄式電子顯微器(SEM)觀察微相自組裝結構。
(2)溫感性高分子聚異丙基丙烯醯胺(PNIPAAm)與生物核鹼基(A,T,C,G,U)其超分子複合物(PNIPAAm-nucleobase)之氫鍵探討:
在前一篇學習到聚(氮-異丙基丙烯醯胺)(Ploy(N-isopropylacrylamide),PNIPAAm)利用其多重氫鍵將聚(氮-異丙基丙烯醯胺)/腺嘌呤(PNIPAAm/adenine)自組裝氫鍵形成仿生複合材料,並得到在比例50/50其分子間氫鍵較為最佳,並想更進一步探討PNIPAAm與其它生物核鹼基的氫鍵作用力,因此PNIPAAm與生物核鹼基比例以前一篇的結果作為基準皆為50/50,生物核鹼基(nucleobase)分別為腺嘌呤(adenine)、胸腺嘧啶(thymine)、胞嘧啶(cytosine)、鳥嘌呤(guanine)及尿嘧啶(uracil)各別與PNIPAAm混摻,探討其不同核鹼基之自組裝氫鍵形成仿生複合材料的結合常數,並使用紅外線光譜(FTIR)來計算其氫鍵自組裝效能,也可以發現藉由動態散射光譜(DLS)量測其低臨界溶液溫度(Lower Critical Solution Temperature,LCST)會有所改變;再利用廣角度X光繞射儀(WAXS)、與掃瞄式電子顯微鏡(SEM)觀察微相氫鍵自組裝結構以及測可變溫之電導率,使之應用在生物電子學。
(3)酸鹼性高分子聚(甲基丙烯酸N,N-二甲氨基乙酯)(PDMAEMA)與明膠(gelatin)製成聚電性複合物之材料應用於抗生素釋放:
將聚苯乙烯(polystyrene,PS)改質成帶有羧基的微球作為核心(core),並交聯明膠(gelatin,CGA)及利用靜電吸引力及氫鍵結合聚甲基丙烯酸N,N-二甲氨基乙酯(poly(N,N-dimethylaminoethyl methacrylate),PDMAEMA)形成聚電解質複合物後(polyelectrolyte complexes,PECs),將核心PS除去,進而得到中空電暈結構的含有CGA及PDMAEMA聚電解質複合物(CGA@PDMAEMA coronas)。在pH值為2.2時,質子化PDMAEMA,CGA@PDMAEMA coronas會澎脹,使中空結構會消失,在pH為5.5時,中空電暈結構又會出現,到pH增加到8.1時,質子化消失,PDMAEMA開始捲曲並將CGA覆蓋而產生一個堅固的外殼。利用此pH敏感特性,將阿莫西林(amoxicillin,AMX)加入CGA@PDMAEMA coronas裡,作抗菌的應用,來抑制大腸桿菌(Escherichia coli)及金黃色葡萄球菌(Staphylococcus aurous)。


(1) Association of poly(N-isopropylacrylamide) containing nucleobase multiple hydrogen bonding of adenine for DNA recognition:
In this study we used the poly(N-isopropylacrylamide) (PNIPAAm) as a medium to generate PNIPAAm–adenine supramolecular complexes. A nucleobase-like hydrogen bonding (NLHB) between PNIPAAm and adenine was found that changed the morphology, crystalline structure, and temperature responsiveness of PNIPAAm microgels relatively to the adenine concentrations. With increasing the adenine concentration, the PNIPAAm–adenine supramolecular complexes gradually altered their morphologies from microgel particles to thin film structures and suppressed the thermodynamical coilto-globule transition of PNIPAAm because of the NLHB existed between the PNIPAAm amide and ester groups and the adenine amide groups (C=O‧‧‧H-N and N-H‧‧‧N-R), verified by FTIR spectral analysis. NLHB was also diverse and extensive upon increasing the temperature; therefore, the thermoresponsive behavior of the complexes was altered with the NLBH intensity, evaluated by the inter-association equilibrium constant (Ka) above and below their LCST. Therefore, PNIPAAm can be as a medium to recognize adenine in various concentrations, which could potentially be applied in DNA recognition.
(2) Thermo-responsive Hydrogel Semiconductor of Poly(N-isopropylacrylamide)-Nucleobase Supramolecular Complexes via Bio-multiple Hydrogen Bonding
Poly(N-isopropylacrylamide) (PNIPAAm) is exploited as a matrix to hybridize with five kinds of nucleobase units including adenine, thymine, uracil, guanine and cytosine generating PNIPAAm-nucleobase supramolecular complexes (PNSC) via bio-multiple hydrogen bonding (BMHB). These nucleobase units interact with PNIPAAm by various strength BMHB leading to a competition between BMHB and intramlecular HB interaction of PNIPAAm. Various changes in morphology, crystalline structure, and thermo-responsive behavior of PNIPAAm are relative to the strength of BMHB interaction between PNIPAAm and nucleobase units. The species of nucleobase units that generate BMHB interaction from high to low strength is following : guanine > adenine > thymine > cytosine > uracil, verified by FTIR, lower critical solution temperature (LCST), and inter-association equilibrium constant (Ka). The PNSCs also exhibit remarkable improvement in conductivity due to formation of rich proton transport of BMHB. Neat PNIPAAm film, regarded as a insulator, could be turned to a semiconductor after hybridizing with nucleobase units. Especially for PNIPAAm-guanine supramolecular complexes, the resistivity is reduced to 1.35 × 105 (ohm-cm). The resistivity of PNIPAAm-cytosine supramolecular complexes exhibits significant change from 5.83 × 106 to 3 × 108 when temperature increases from 40 to 50C, which could be applied in thermo-sensing. The results showed that conductivity of hydrogels can be improved significantly via BMHB using a simple approach, which may provide hydrogels a novel sight in application of bioelectronics.
(3) Degradable coronas comprising polyelectrolyte complexes of PDMAEMA and gelatin for pH-triggered antibiotic release
Carboxyl-modified polystyrene (PS) nanospheres were used as sacrificial cores upon which cross-linked gelatin (CGA) was assembled through successive immobilization with poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA), forming polyelectrolyte complexes (PECs) stabilized through electrostatic interactions and hydrogen bonding. The PEC coronas, possessing hollow structure, of the PEC CGA@PDMAEMA after removing the PS cores were obtained. At pH 2.2, the protonated PDMAEMA swelled the PEC coronas completely, leading to the disappearance of the inner cavities, which reappeared after increasing the pH to 5.5. Further increasing the pH to 8.1 caused the deprotonated PDMAEMA to collapse completely to cover the CGA surface, generating a solid shell. This pH-responsive structural change of the PEC coronas suggested that they could be used as drug capsules. Accordingly, amoxicillin (AMX) was loaded into the coronas as a medium to inhibit the bacterial viability of Escherichia coli and Staphylococcus aureus. Both of bacterial growth rates of E. coli and S. aureus in solution at pH 8.1 in the presence of the AMX-loaded PEC coronas did not change significantly within 8 h comparing with that in a blank experiment, indicating that the PEC coronas confined the AMX units within the hollow structure. With decrease of the pH to 5.5, the bacterial growth rates were inhibited obviously within 2 h relative to that in a blank experiment, confirming that the AMX units could be released from the PEC coronas by tuning pH value.

摘 要 i ABSTRACT iv 致 謝 viii 目 錄 x 表目錄 xiv 圖目錄 xv 第1章 緒論 1 1.1. 前言 1 1.2. 智能性高分子材料 2 1.3. 溫感性高分子 3 1.4. 酸鹼性高分子 4 1.5. 目的與研究動機 5 第2章 文獻回顧 10 2.1. 超分子化學簡介 10 2.1.1. 分子自組裝簡介 12 2.1.2. 氫鍵 13 2.1.3. DNA分子識別 14 2.2. 聚N-異丙基丙烯酰胺簡介與應用 15 2.3. 聚(甲基丙烯酸N,N-二甲氨基乙酯)簡介與應用 17 2.4. 明膠(gelatin)簡介與應用 18 2.5. 核-殼-暈微胞之簡介(core-shell-corona micelles) 19 2.5.1. 核-殼-暈微胞結構及其應用 19 2.5.2. 藥物釋放機制 20 第3章 溫感性高分子聚N-異丙基丙烯酰胺(PNIPAAm)多重氫鍵對adenine的識別 30 3.1. 摘要 30 3.2. 實驗部份 30 3.2.1. 實驗材料 30 3.2.2. 聚異丙基丙烯醯胺合成 31 3.2.3. 聚異丙基丙烯醯胺與核鹼基混掺製備 32 3.3. 樣品結構分析與性質鑑定測試 32 3.4. 結果與討論 38 3.4.1. PNIPAAm/adenine自組裝後之溫敏性探討及分析 38 3.4.2. PNIPAAm與腺嘌呤複合物表面形態分析 41 3.4.3. 鹼基型自組裝氫鍵複合物鑑定 43 3.4.4. 分子識別作用力測試 45 3.5. 結論 46 第4章 溫感性仿生高分子聚異丙基丙烯醯胺(PNIPAAm)與生物核鹼基(A,T,C,G,U)其混掺(PNIPAAm-nucleobase)之氫鍵探討與其分子識別應用 59 4.1. 摘要 59 4.2. 實驗部份 60 4.2.1. 實驗材料 60 4.2.2. 聚異丙基丙烯醯胺與核鹼基混掺製備 60 4.3. 樣品結構分析與性質鑑定測試 61 4.4. 結果與討論 67 4.4.1. 溫感性PNIPAAm-nucleobase之不同鹼基自組裝氫鍵鑑定 67 4.4.2. 溫感性PNIPAAm-nucleobase表面結構分析 70 4.4.3. 溫感性PNIPAAm-nucleobase熱行為分析 72 4.5. 結論 74 第5章 酸鹼性仿生高分子聚(甲基丙烯酸N,N-二甲氨基乙酯)(PDMAEMA)與明膠(gelatin)製成聚電性複合物之材料應用於抗生素釋放 90 5.1. 摘要 90 5.2. 實驗部份 91 5.2.1. 實驗材料 91 5.2.2. 聚苯乙烯改質製成 91 5.2.3. 聚(甲基丙烯酸N,N-二甲氨基乙酯)(PDMAEMA)合成製備 93 5.2.4. 中空聚電解質複合物製備 94 5.3. 樣品結構分析與性質鑑定測試 94 5.4. 結果與討論 100 5.4.1. 酸鹼性PEC coronas特徵分析 100 5.4.2. PEC coronas相貌分析 101 5.4.3. 藥物釋放分析 104 5.4.4. 抗菌特性分析與降解特性 105 5.5. 結論 107 第6章 總結 119 參考文獻 121 附 錄 135 授 權 書 139

1. Kumar A, Srivastava A, Galaev IY, and Mattiasson B. Progress in Polymer Science 2007;32(10):1205-1237.
2. Kopeček J. European Journal of Pharmaceutical Sciences 2003;20(1):1-16.
3. Nair KP, Breedveld V, and Weck M. Soft Matter 2011;7(2):553.
4. Chun-Yan Hong XL, and Cai-Yuan Pan. J. Phys. Chem. C 2008;112:15320-15324.
5. Du F-S, Wang Y, Zhang R, and Li Z-C. Soft Matter 2010;6(5):835.
6. Gil E and Hudson S. Progress in Polymer Science 2004;29(12):1173-1222.
7. Milichovsky M. Journal of Biomaterials and Nanobiotechnology 2010;01(01):17-30.
8. Tokuyama H, Hisaeda J, Nii S, and Sakohara S. Separation and Purification Technology 2010;71(1):83-88.
9. Fitzpatrick SD, Jafar Mazumder MA, Lasowski F, Fitzpatrick LE, and Sheardown H. Biomacromolecules 2010;11(9):2261-2267.
10. Oak M and Singh J. J Control Release 2012;163(2):145-153.
11. Jin Y, Song L, Su Y, Zhu L, Pang Y, Qiu F, Tong G, Yan D, Zhu B, and Zhu X. Biomacromolecules 2011;12(10):3460-3468.
12. Zhao C, Nie S, Tang M, and Sun S. Progress in Polymer Science 2011;36(11):1499-1520.
13. Fox JD and Rowan SJ. Macromolecules 2009;42(18):6823-6835.
14. Sambe Ln, Stoffelbach Fo, Lyskawa J, Delattre Fo, Fournier D, Bouteiller L, Charleux B, Cooke G, and Woisel P. Macromolecules 2011;44(16):6532-6538.
15. Wan Y, Yang H, and Zhao D. Acc Chem Res 2006;39(7):423-432.
16. Guo M-J, Zhao Z, Fan Y-G, Wang C-H, Shi L-Q, Xia J-J, Long Y, and Mi H-F. Biomaterials 2006;27(24):4381-4387.
17. Nabeshima T and Akine S. The Chemical Record 2008;8(4):240-251.
18. Du P, Liu J, Chen G, and Jiang M. Langmuir 2011:110707105417038.
19. Doval DA, Areephong J, Bang E-K, Bertone L, Charbonnaz P, Fin A, Lin N-T, Lista M, Matile S, Montenegro J, Orentas E, Sakai N, Tran D-H, and Jentzsch AV. Langmuir 2011;27(16):9696-9705.
20. Kuo S and Cheng R. Polymer 2009;50(1):177-188.
21. Schmidt R, Stolte M, Grüne M, and Würthner F. Macromolecules 2011;44(10):3766-3776.
22. Bertrand A, Chen S, Souharce Gg, Ladavière C, Fleury E, and Bernard J. Macromolecules 2011;44(10):3694-3704.
23. McHugh C and Erxleben A. Crystal Growth & Design 2011;11(11):5096-5104.
24. González-Rodríguez D and Schenning APHJ. Chemistry of Materials 2011;23(3):310-325.
25. Vandeleene S, Jivanescu M, Stesmans A, Cuppens J, Van Bael MJ, Verbiest T, and Koeckelberghs G. Macromolecules 2011;44(12):4911-4919.
26. Manna U, Bharani S, and Patil S. Biomacromolecules 2009;10(9):2632-2639.
27. Coulocheri SA, Pigis DG, Papavassiliou KA, and Papavassiliou AG. Biochimie 2007;89(11):1291-1303.
28. Chen W-C, Kuo S-W, Jeng US, and Chang F-C. Macromolecules 2008;41(4):1401-1410.
29. Kuo S-W and Cheng R-S. Polymer 2009;50(1):177-188.
30. Cavalieri F, Postma A, Lee L, and Caruso F. ACS Nano 2009;3(1):234-240.
31. Allen MH, Green MD, Getaneh HK, Miller KM, and Long TE. Biomacromolecules 2011;12(6):2243-2250.
32. Coulocheri SA, Pigis DG, Papavassiliou KA, and Papavassiliou AG. Biochimie 2007;89(11):1291-1303.
33. Kim BS, Park SW, and Hammond PT. ACS Nano 2008;2(2):386-392.
34. Kuang H, Wu S, Xie Z, Meng F, Jing X, and Huang Y. Biomacromolecules 2012;13(9):3004-3012.
35. Cheng C-C, Huang C-F, Yen Y-C, and Chang F-C. Journal of Polymer Science Part A: Polymer Chemistry 2008;46(19):6416-6424.
36. Shokrollahi P. Iranian Polymer Journal 2010;19(1):65-74.
37. Dawn A and Nandi AK. Macromolecular Bioscience 2005;5(5):441-450.
38. Hou S, Yang K, Yao Y, Liu Z, Feng X, Wang R, Yang Y, and Wang C. Colloids and Surfaces B: Biointerfaces 2008;62(1):151-156.
39. Kimura-Suda H, Petrovykh DY, Tarlov MJ, and Whitman LJ. J Am Chem Soc 2003;125(30):9014-9015.
40. Ma D and Zhang L-M. Biomacromolecules 2011;12(9):3124-3130.
41. Mukherjee P, Dawn A, and Nandi AK. Langmuir 2010;26(13):11025-11034.
42. Hu C-H, Zhang X-Z, Zhang L, Xu X-D, and Zhuo R-X. Journal of Materials Chemistry 2009;19(47):8982.
43. Gu Z, Yuan Y, He J, Zhang M, and Ni P. Langmuir 2009;25(9):5199-5208.
44. Cheng C-C, Yen Y-C, Ye Y-S, and Chang F-C. Journal of Polymer Science Part A: Polymer Chemistry 2009;47(23):6388-6395.
45. Chen X, Ding X, Zheng Z, and Peng Y. Colloid and Polymer Science 2004;283(4):452-455.
46. Song JM, Asthana A, and Kim DP. Talanta 2006;68(3):940-944.
47. Chiang WH, Ho VT, Huang WC, Huang YF, Chern CS, and Chiu HC. Langmuir 2012;28(42):15056-15064.
48. Wei H, Zhang XZ, Chen WQ, Cheng SX, and Zhuo RX. J Biomed Mater Res A 2007;83(4):980-989.
49. Shih YJ, Chang Y, Deratani A, and Quemener D. Biomacromolecules 2012;13(9):2849-2858.
50. Kim SY, Cho SM, Lee YM, and Kim SJ. Journal of Applied Polymer Science 2000;78(7):1381-1391.
51. Cheng N, Liu W, Cao Z, Ji W, Liang D, Guo G, and Zhang J. Biomaterials 2006;27(28):4984-4992.
52. Zhang X, Wu D, and Chu C-C. Biomaterials 2004;25(19):4719-4730.
53. Wei H, Quan CY, Chang C, Zhang XZ, and Zhuo RX. J Phys Chem B 2010;114(16):5309-5314.
54. Cheng C, Wei H, Zhu JL, Chang C, Cheng H, Li C, Cheng SX, Zhang XZ, and Zhuo RX. Bioconjug Chem 2008;19(6):1194-1201.
55. In summary Fpco--a-, ethylamino)-7-nitro-2, 3-benzoxadiazole (NBDAE) donor, the arB-bpaRi, charac- sfwpaHt-Ct-r, hydrophobic twrcit, P(St-co-NBDAE)- PatPbo, Self- b-PN-c-Radc, can amota-sad, chemosensors samrf, for metal ions (Hg2t and Cu2t) p, and temperatures due to, the tHt-ap-roRmw, thermoresponsive coronas. On the other hand Ctic, and qitr-ooRm, afford nonfluorescent species with broad absorption band w, FRET ceqtNevt, mechanism. Therefore adcm, on caqrtpoCtib, Most trcoNei, importantly tsdbtFpcb, Jinming, Dai L, and Liu S. Macromolecules 2011;44(12):4699-4710.
56. Woodcock JW, Jiang X, Wright RAE, and Zhao B. Macromolecules 2011;44(14):5764-5775.
57. Wei Q, Ji J, and Shen J. Macromolecular Rapid Communications 2008;29(8):645-650.
58. Niskanen J, Karesoja M, Rossi T, and Tenhu H. Polymer Chemistry 2011;2(9):2027.
59. He X, Wu X, Cai X, Lin S, Xie M, Zhu X, and Yan D. Langmuir 2012;28(32):11929-11938.
60. Wu W, Liu J, Cao S, Tan H, Li J, Xu F, and Zhang X. Int J Pharm 2011;416(1):104-109.
61. Gupta P, Vermani K, and Garg S. Drug Discov Today 2002;7(10):569-579.
62. Rawlinson LA, Ryan SM, Mantovani G, Syrett JA, Haddleton DM, and Brayden DJ. Biomacromolecules 2010;11(2):443-453.
63. Porcaro A, Ottone ML, and Deiber JA. Polymer 2013;54(11):2706-2716.
64. Ma W, Tang C-H, Yin S-W, Yang X-Q, and Qi J-R. Food Research International 2013;51(1):321-324.
65. Yeh M-k, Liang Y-m, Cheng K-m, Dai N-T, Liu C-c, and Young J-j. Polymer 2011;52(4):996-1003.
66. Thein-Han WW, Saikhun J, Pholpramoo C, Misra RD, and Kitiyanant Y. Acta Biomater 2009;5(9):3453-3466.
67. Pereda M, Ponce AG, Marcovich NE, Ruseckaite RA, and Martucci JF. Food Hydrocolloids 2011;25(5):1372-1381.
68. Lai JY and Li YT. Biomacromolecules 2010;11(5):1387-1397.
69. Zhang X, Do MD, Casey P, Sulistio A, Qiao GG, Lundin L, Lillford P, and Kosaraju S. J Agric Food Chem 2010;58(11):6809-6815.
70. Burugapalli K, Bhatia D, Koul V, and Choudhary V. Journal of Applied Polymer Science 2001;82(1):217-227.
71. Koul V, Mohamed R, Kuckling D, Adler HJ, and Choudhary V. Colloids Surf B Biointerfaces 2011;83(2):204-213.
72. Yao D, Guo Y, Chen S, Tang J, and Chen Y. Polymer 2013.
73. Wu C, Ying A, and Ren S. Colloid and Polymer Science 2012;291(4):827-834.
74. Guo XD, Zhang LJ, Chen Y, and Qian Y. AIChE Journal 2009;56(7):1922-1931.
75. Gulfam M, Lee JM, Kim JE, Lim DW, Lee EK, and Chung BG. Langmuir 2011;27(17):10993-10999.
76. Ghosh Chaudhuri R and Paria S. Chem Rev 2012;112(4):2373-2433.
77. Tan WS, Cohen RE, Rubner MF, and Sukhishvili SA. Macromolecules 2010;43(4):1950-1957.
78. Esser-Kahn AP, Odom SA, Sottos NR, White SR, and Moore JS. Macromolecules 2011;44(14):5539-5553.
79. Fredenberg S, Wahlgren M, Reslow M, and Axelsson A. Int J Pharm 2011;415(1-2):34-52.
80. Ozeroglu C. eXPRESS Polymer Letters 2009;3(3):168-176.
81. Huang Y, Yu H, and Xiao C. Carbohydrate Polymers 2007;69(4):774-783.
82. Tan WS, Zhu Z, Sukhishvili SA, Rubner MF, and Cohen RE. Macromolecules 2011;44(19):7767-7774.
83. Chen J-K and Li J-Y. Sensors and Actuators B: Chemical 2010;150(1):314-320.
84. Fuchise K, Kakuchi R, Lin S-T, Sakai R, Sato S-I, Satoh T, Chen W-C, and Kakuchi T. Journal of Polymer Science Part A: Polymer Chemistry 2009;47(22):6259-6268.
85. Xiong Da, Li Z, Ma R, An Y, and Shi L. Journal of Polymer Science Part A: Polymer Chemistry 2009;47(6):1651-1660.
86. Liu Y-Y, Fan X-D, and Zhao YAB. Journal of Polymer Science Part A: Polymer Chemistry 2005;43(16):3516-3524.
87. Hsu W-P. Journal of Applied Polymer Science 2006;100(2):1205-1213.
88. Tian B-S and Yang C. The Journal of Physical Chemistry C 2009;113(12):4925-4931.
89. Wang Z-C, Xu X-D, Chen C-S, Yun L, Song J-C, Zhang X-Z, and Zhuo R-X. ACS Applied Materials & Interfaces 2010;2(4):1009-1018.
90. Lee C, Lin C, Chien C, and Chiu W. European Polymer Journal 2008;44(9):2768-2776.
91. Zhang Z-X, Liu KL, and Li J. Macromolecules 2011;44(5):1182-1193.
92. Yu Q, Zhang Y, Chen H, Zhou F, Wu Z, Huang H, and Brash JL. Langmuir 2010;26(11):8582-8588.
93. Kuckling D. Colloid and Polymer Science 2009;287(8):881-891.
94. Lu Y, Choi YJ, Lim HS, Kwak D, Shim C, Lee SG, and Cho K. Langmuir 2010;26(22):17749-17755.
95. Wu JJ, Lu TR, Wu CT, Wang TY, Chen LC, Chen KH, Kuo CT, Chen TM, Yu YC, Wang CW, and Lin EK. Diamond and Related Materials 1999;8(2–5):605-609.
96. Hammud H, Nemer G, Sawma W, Touma J, Barnabe P, Boumouglabey Y, Ghannoum A, Elhajjar J, and Usta J. Chemico-Biological Interactions 2008;173(2):84-96.
97. Yoshimasa Kyogoku RCL, and Alexander Rich. Journal of the American Chemical Society 1996;19.
98. Autieri E, Chiessi E, Lonardi A, Paradossi G, and Sega M. The Journal of Physical chemistry B 2011;115(19):5827-5839.
99. Costa E, Coelho M, Ilharco LM, Aguiar-Ricardo A, and Hammond PT. Macromolecules 2011;44(3):612-621.
100. Janjua NK, Siddiqa A, Yaqub A, Sabahat S, Qureshi R, and Haque Su. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2009;74(5):1135-1137.
101. Yoshikawa I, Yanagi S, Yamaji Y, and Araki K. Tetrahedron 2007;63(31):7474-7481.
102. Fidder H, Yang M, Nibbering ETJ, Elsaesser T, Rottger K, and Temps F. The Journal of Physical Chemistry A 2013;117(5):845-854.
103. Fagundes J, Castilho ML, Tellez Soto CA, Vieira LdS, Canevari RA, Favero PP, Martin AA, and Raniero L. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014;118(0):28-35.
104. Wu Y-C and Kuo S-W. Polymer Chemistry 2012;3(11):3100-3111.
105. Sukul PK and Malik S. Soft Matter 2011;7(9):4234.
106. Carneiro CE, Berndt G, de Souza Junior IG, de Souza CM, Paesano A, Jr., da Costa AC, di Mauro E, de Santana H, Zaia CT, and Zaia DA. Orig Life Evol Biosph 2011;41(5):453-468.
107. Hemp ST and Long TE. Macromol Biosci 2012;12(1):29-39.
108. Tenorio JC, Correa RS, Batista AA, and Ellena J. Journal of Molecular Structure 2013;1048:274-281.
109. Wang J-H, Altukhov O, Cheng C-C, Chang F-C, and Kuo S-W. Soft Matter 2013;9(21):5196.
110. Lu Y-S, Lin Y-C, and Kuo S-W. Macromolecules 2012;45(16):6547-6556.
111. Chen L, Liu M, Lin L, Zhang T, Ma J, Song Y, and Jiang L. Soft Matter 2010;6(12):2708.
112. Burdukova E, Li H, Ishida N, O'Shea JP, and Franks GV. J Colloid Interface Sci 2010;342(2):586-592.
113. Reddy PM, Taha M, Venkatesu P, Kumar A, and Lee MJ. J Chem Phys 2012;136(23):234904.
114. Zhou W, Yuan S, Chen Y, and Bao L. Journal of Applied Polymer Science 2012;124(4):3124-3131.
115. Hu W-H, Huang K-W, and Kuo S-W. Polymer Chemistry 2012;3(6):1546.
116. Kumar S, Koh J, Kim H, Gupta MK, and Dutta PK. Int J Biol Macromol 2012;50(3):493-502.
117. Yang L, Liu TQ, Song KD, Wu S, and Fan X. Journal of Applied Polymer Science 2013;127(6):4280-4287.
118. Chang T-L, Tsai C-Y, Sun C-C, Uppala R, Chen C-C, Lin C-H, and Chen P-H. Microelectronic Engineering 2006;83(4-9):1630-1633.
119. Davis JT and Spada GP. Chem Soc Rev 2007;36(2):296-313.
120. Berber H. 2013.
121. Wang A, Yin H, Ge C, Ren M, Liu Y, and Jiang T. Applied Surface Science 2010;256(8):2611-2615.
122. Wan LS, Ke BB, Zhang J, and Xu ZK. J Phys Chem B 2012;116(1):40-47.
123. Das RK, Kasoju N, and Bora U. Nanomedicine 2010;6(1):153-160.
124. Sawada I, Fachrul R, Ito T, Ohmukai Y, Maruyama T, and Matsuyama H. Journal of Membrane Science 2012;387-388:1-6.
125. Mandal BB, Mann JK, and Kundu SC. Eur J Pharm Sci 2009;37(2):160-171.
126. Sisson K, Zhang C, Farach-Carson MC, Chase DB, and Rabolt JF. Biomacromolecules 2009;10(7):1675-1680.
127. Gao C, Liu M, Chen S, Jin S, and Chen J. Int J Pharm 2009;371(1-2):16-24.
128. Estrada-Villegas GM, Macossay J, and Bucio E. Journal of Radioanalytical and Nuclear Chemistry 2010;284(1):131-135.
129. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, and Ramakrishna S. Biomaterials 2008;29(34):4532-4539.
130. Tungkavet T, Sirivat A, Seetapan N, and Pattavarakorn D. Polymer 2013;54(9):2414-2421.
131. Wang D, Yan R, Liu X, Su Y, Zhang M, and Zhang W. J Colloid Interface Sci 2012;367(1):249-256.
132. Zheng JP, Gao S, Wang JX, and Yao KD. Journal of Materials Science 2005;40(15):4029-4033.
133. Yu G, Man Z, Li Q, Li N, Wu X, Asumana C, and Chen X. Reactive and Functional Polymers 2013;73(8):1058-1064.
134. Chang CH, Lin YH, Yeh CL, Chen YC, Chiou SF, Hsu YM, Chen YS, and Wang CC. Biomacromolecules 2010;11(1):133-142.
135. Wang Y, Jiang G, Sun X, Ding M, Hu H, and Chen W. Polymer Chemistry 2010;1(10):1638.
136. Chauhan GS, Kumar S, Kumari A, and Sharma R. Journal of Applied Polymer Science 2003;90(14):3856-3871.
137. Sui X, Yuan J, Zhou M, Zhang J, Yang H, Yuan W, Wei Y, and Pan C. Biomacromolecules 2008;9(10):2615-2620.
138. Lu C, Mu B, and Liu P. Colloids Surf B Biointerfaces 2011;83(2):254-259.
139. Hiller J, Mendelsohn JD, and Rubner MF. Nat Mater 2002;1(1):59-63.
140. Chen J-K, Bai B-J, and Chang F-C. Applied Physics Letters 2011;99(1):013701-013703.
141. Chen J-K and Li J-Y. Journal of Colloid and Interface Science 2011;358(2):454-461.
142. Castillo-Ortega MM, Montano-Figueroa AG, Rodriguez-Felix DE, Munive GT, and Herrera-Franco PJ. Materials Letters 2012;76:250-254.
143. Elmolla ES and Chaudhuri M. J Hazard Mater 2010;173(1-3):445-449.
144. Nie H, Li J, He A, Xu S, Jiang Q, and Han CC. Biomacromolecules 2010;11(8):2190-2194.

無法下載圖示 全文公開日期 2019/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE