簡易檢索 / 詳目顯示

研究生: 王昱琳
Yu-Lin Wang
論文名稱: 瓊脂醣水凝膠之線性與非線性流變學研究
Studies on Linear and Nonlinear Rheological Behaviors of Agarose Hydrogels
指導教授: 洪伯達
Po-Da Hong
口試委員: 何榮銘
Rong-Ming Ho
童世煌
Shih-Huang Tung
陳志堅
Jyh-Chien Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 46
中文關鍵詞: 流變瓊脂醣線性非線性
外文關鍵詞: rheology, agarose, linear, nonlinear
相關次數: 點閱:429下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在研究凝膠的結構與性質中,流變學扮演了重要的角色,本論文中,我們試圖由線性流變的方法探討瓊脂醣凝膠網目黏彈性質,並利用網目彈性與瓊脂醣濃度的幂律關係,決定凝膠結構所響應之彈性特徵。然而在本研究中,我們發現由於複雜的老化效應,無法直接由標度理論特徵網目的彈性性質。為了釐清結構與彈性響應的關係,我們進一步利用非線性流變學的方法進行研究。

    首先在大振幅剪切振盪(LAOS)的實驗中,我們由微纖狀的凝膠網目表現出應變硬化的行為,證明瓊脂醣凝膠的熵彈性本質。其次在prestress protocol的實驗中,我們由微分彈性模數與施加預應力的標度關係,K^'~σ_0,再進一步證明,瓊脂醣凝的熵彈性本質與肌動蛋白網目不同,是響應出軟交聯的特徵,與我們研究室之前提出的纖網目模型一致。

    此外,結合時間分辨流變實驗和小角光散射的結果,也證實瓊脂醣分子鏈在溶液中,以蠕蟲狀鏈的形式存在,並表現出結構流體的特徵,即在小應變下,流體的G^'>G^''。


    Rheology plays an important role in the studies of gel structure and properties. In this thesis, we attempt to use the linear rheological method to probe the viscoelastic properties of the agarose hydrogels and use the power law relationship between network elasticity and the concentration of the agarose hydrogels to determine the characteristic elastic response of the gel structure. However, we discover the complex aging effect so that we cannot directly characterize the elastic properties of networks by scaling theory in this study. In order to clarify the relationship between the structure and the elastic responses, we further investigate this system by nonlinear rheological methods.

    First, we verify the intrinsic entropic elasticity of the agarose hydrogels due to the fibrillar networks reveal the behavior of strain stiffening in the large amplitude oscillatory shear (LAOS) experiments. Secondly, the scaling relationship between the differential modulus and the applied prestress from the prestress protocol, K^'~σ_0, further confirms that the intrinsic entropic elasticity of the agarose hydrogels responds the characteristic of soft cross-links, which is different from the F-actin networks, and is similar to the fibrillar network model we previously propose.

    In addition, we combine the results of time-resolved rheological measurements and small-angle light scattering, and verify that the agarose chains behave as worm-like chains in the solutions. The agarose chains appear the feature of structured fluid. Namely, the storage modulus of the fluid is higher than loss modulus under the small amplitude.

    ABSTRACT II 誌謝 III CONTENTS IV CHART CATALOGUES VI PRINCIPAL NOTATION VIII CHAPTER 1 INTRODUCTION 1 1.1 Literature Review of Agarose Hydrogels 1 1.2 The Viscoelastic Model of Gel Networks 3 1.2.1 Elasticity of Percolation Networks 3 1.2.2 Jones and Marques’ Freely Hinged Network Model 4 1.2.3 Concentration Dependence of the Storage Modulus 6 1.2.4 Entropic Nature of Strain Stiffening at Large Deformation 9 1.2.5 Differential Elastic Modulus 11 1.3 The Purpose of This Thesis 13 CHAPTER 2 EXPERIMENTAL SECTION 14 2.1 Materials and Preparation of Agarose Hydrogels 14 2.2 Phase Diagram of Agarose Hydrogel Aqueous Solutions 14 2.2.1 Sol-Gel Transition and Gel Melting Temperature 14 2.2.2 Turbidity (Cloud Point) 14 2.3 Morphology 15 2.4 Rheological Measurement 15 2.4.1 Reducing Evaporation 15 2.4.2 Preventing Wall Slip 17 2.4.3 Time-Resolved Measurement 19 2.4.4 Measurement of Nonlinear Rheology 21 2.4.4.1 Large Amplitude Oscillation Shear (LAOS) 21 2.4.4.2 Strain Ramp 22 2.4.4.3 Prestress Protocol 23 CHAPTER 3 RESULTS AND DISCUSSION 24 3.1 Phase Diagram and Morphology of Agarose Hydrogels 24 3.2 Rheological Behavior of Agarose Hydrogels 26 3.2.1 Concentration Dependence of Gel Elasticity 26 3.2.2 Temperature Dependence of Gel Elasticity 28 3.2.3 Time-resolved Rheology and Transient Gel Elasticity 29 3.2.4 Nonlinear Viscoelastic Behavior of Agarose Hydrogels 32 3.3 Large Amplitude Oscillatory Shear Experiment 34 3.4 Origin of the Strain Stiffening 38 CHAPTER 4 SUMMARY 42 REFERENCE 43

    (1) Annabi, N.; Nichol, J. W.; Zhong, X.; Ji, C.; Koshy, S.; Khademhosseini, A.; Dehghani, F., “Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering,” Tissue Eng Part B Rev 2010, 16, 371–383.
    (2) Arnott, S.; Fulmer, A.; Scott, W. E.; Dea, I. C.; Moorhouse, R.; Rees, D. A., “The Agarose Double Helix and Its Function in Agarose Gel Structure,” J. Mol. Biol. 1974, 90, 269–284.
    (3) Djabourov, M.; Clark, A. H.; Rowlands, D. W.; Ross-Murphy, S. B., “Small-Angle X-Ray Scattering Characterization of Agarose Sols and Gels,” Macromolecules 1989, 22, 180–188.
    (4) Foord, S. A.; Atkins, E. D. Y., “New X-Ray Diffraction Results From Agarose: Extended Single Helix Structures and Implications for Gelation Mechanism,” Biopolymers 1989, 28, 1345–1365.
    (5) Itagaki, H.; Fukiishi, H.; Imai, T.; Watase, M., “Molecular Structure of Agarose Chains in Thermoreversible Hydrogels Revealed by Means of a Fluorescent Probe Technique,” J. Polym. Sci. B: Polym. Phys. 2005, 43, 680–688.
    (6) Guenet, J.-M.; Brulet, A.; Rochas, C., “Agarose Chain Conformation in the Sol State by Neutron Scattering,” Int. J. Bio. Macromol. 1993, 15, 131–132.
    (7) De Gennes, P.-G. Scaling Concepts in Polymer Physics; Cornell University Press: New York, 1979.
    (8) Chou, C.-M.; Hong, P.-D., “Spatiotemporal Evolution in Morphogenesis of Thermoreversible Polymer Gels with Fibrillar Network,” Macromolecules 2010, 43, 10621–10627.
    (9) Ramzi, M.; Rochas, C.; Guenet, J.-M., “Structure-Properties Relation for Agarose Thermoreversible Gels in Binary Solvents,” Macromolecules 1998, 31, 6106–6111.
    (10) Jones, J. L.; Marques, C. M., “Rigid Polymer Network Models,” J. Phys. 1990, 51, 1113–1127.
    (11) Ball, R. C.; Kantor, Y., private communication.
    (12) Joly-Duhamel, C.; Hellio, D.; Ajdari, A.; Djabourov, M., “All Gelatin Networks: 2. The Master Curve for Elasticity,” Langmuir 2002, 18, 7158–7166.
    (13) Shin, J.; Gardel, M. L.; Mahadevan, L.; Matsudaira, P.; Weitz, D. A., “Relating Microstructure to Rheology of a Bundled and Cross-Linked F-Actin Network in Vitro,” PNAS 2004, 101, 9636–9641.
    (14) MacKintosh, F. C.; Kas, J.; Janmey, P. A., “Elasticity of Semiflexible Biopolymer Networks,” Phys. Rev. Lett. 1995, 75, 4425–4428.
    (15) Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics (International Series of Monographs on Physics); Oxford University Press, USA: New York, 1988.
    (16) Semenov, A. N., “Dynamics of Concentrated Solutions of Rigid-Chain Polymers. Part 1.—Brownian Motion of Persistent Macromolecules in Isotropic Solution,” J. Chem. Soc., Faraday Trans. 2 1986, 82, 317–329.
    (17) Isambert, H.; Maggs, A. C., “Dynamics and Rheology of Actin Solutions,” Macromolecules 1996, 29, 1036–1040.
    (18) Janmey, P. A.; Hvidt, S.; Peetermans, J.; Lamb, J.; Ferry, J. D.; Stossel, T. P., “Viscoelasticity of F-Actin and F-Actin/Gelsolin Complexes,” Biochemistry 1988, 27, 8218–8227.
    (19) Janmey, P. A.; Hvidt, S.; Oster, G. F.; Lamb, J.; Stossel, T. P.; Hartwig, J. H., “Effect of ATP on Actin Filament Stiffness,” Nature (London) 1990, 347, 95–99.
    (20) Kas, J.; Laham, L. E.; Finger, D. K.; Janmey, P. A., Mol. Biol. Cell 1994, 5, 157a
    (21) Bustamante, C.; Marko, J. F.; Siggia, E. D.; Smith, S., “Entropic Elasticity of λ-Phage DNA,” Science 1994, 265, 1599–1600.
    (22) Fixman, M.; Kovac, J., “Polymer Conformational Statistics. III. Modified Gaussian Models of Stiff Chains,” J. Chem. Phys. 1973, 58, 1564–1568.
    (23) Schmidt, C. F.; Baermann, M.; Isenberg, G.; Sackmann, E., “Chain Dynamics, Mesh Size, and Diffusive Transport in Networks of Polymerized Actin: A Quasielastic Light Scattering and Microfluorescence Study,” Macromolecules 1989, 22, 3638–3649.
    (24) Gardel, M. L.; Shin, J. H.; MacKintosh, F. C.; Mahadevan, L.; Matsudaira, P.; Weitz, D. A., “Elastic Behavior of Cross-Linked and Bundled Actin Networks,” Science 2004, 304, 1301–1305.
    (25) Kasza, K. E.; Broedersz, C. P.; Koenderink, G. H.; Lin, Y. C.; Messner, W.; Millman, E. A.; Nakamura, F.; Stossel, T. P.; MacKintosh, F. C.; Weitz, D. A., “Actin Filament Length Tunes Elasticity of Flexibly Cross-Linked Actin Networks,” Biophys. J. 2010, 99, 1091–1100.
    (26) Sato, J.; Breedveld, V., “Evaporation Blocker for Cone-Plate Rheometry of Volatile Samples,” Appl. Rheol. 2005, 15, 390–397.
    (27) Carotenuto, C.; Minale, M., “”On the Use of Rough Geometries in Rheometry, J. Non-Newtonian Fluid Mech. 2013, 198, 39–47.
    (28) Reiner, M., “The Deborah Number,” Physics Today. January 19, 1964, p. 62.
    (29) Winter, H. H.; Morganelli, P.; Chambon, F., “Stoichiometry Effects on Rheology of Model Polyurethanes at the Gel Point,” Macromolecules 1988, 21, 532–535.
    (30) Holly, E. E.; Venkataraman, S. K.; Chambon, F.; Winter, H. H., “Fourier Transform Mechanical Spectroscopy of Viscoelastic Materials with Transient Structure,” J. Non-Newtonian Fluid Mech. 1988, 27, 17–26.
    (31) Scanlan, J. C.; Winter, H. H., “The Evolution of Viscoelasticity Near the Gel Point of End-Linking Poly(Dimethylsiloxane)s,” Makromol. Chem. Macromol. Symp. 1991, 45, 11–21.
    (32) Mours, M.; Winter, H. H., “Time-Resolved Rheometry,” Rheol. Acta 1994, 33, 385–397.
    (33) Semmrich, C.; Larsen, R. J.; Bausch, A. R., “Nonlinear Mechanics of Entangled F-Actin Solutions,” Soft Matter 2008, 4, 1675–1680.
    (34) Nishinari, K.; Koide, S.; Ogino, K., “On the Temperature Dependence of Elasticity of Thermo-Reversible Gels,” J. Phys. (Paris) 1985, 46, 793–797.
    (35) Shih, W.-H.; Shih, W. Y.; Kim, S.-I.; Liu, J.; Aksay, I. A., “Scaling Behavior of the Elastic Properties of Colloidal Gels,” Phys. Rev. A 1990, 42, 4772–4779.
    (36) Ferri, F.; Greco, M.; Arcovito, G.; Bassi, F.; De Spirito, M.; Paganini, E.; Rocco, M., “Growth Kinetics and Structure of Fibrin Gels,” Phys. Rev. E 2001, 63, 031401.
    (37) Ewoldt, R. H.; Hosoi, A. E.; McKinley, G. H., “New Measures for Characterizing Nonlinear Viscoelasticity in Large Amplitude Oscillatory Shear,” J. Rheol. 2008, 52, 1427–1458.
    (38) Schmoller, K. M.; Bausch, A. R., “Similar Nonlinear Mechanical Responses in Hard and Soft Materials,” Nat. Mater. 2013, 12, 278–281.
    (39) Vermant, J.; Walker, L.; Moldenaers, P.; Mewis, J., “Orthogonal Versus Parallel Superposition Measurements,” J. Non-Newtonian Fluid Mech. 1998, 79, 173–189.
    (40) Broedersz, C. P.; Kasza, K. E.; Jawerth, L. M.; Munster, S.; Weitz, D. A.; MacKintosh, F. C., “Measurement of Nonlinear Rheology of Cross-Linked Biopolymer Gels,” Soft Matter 2010, 6, 4120.
    (41) Guenet, J.-M. Polymer-Solvent Molecular Compounds; Oxford Press 2008.
    (42) Stauffer, D; Coniglio, A; Adam, M., “Gelation and Critical Phenomena,” Advance in Polymer Science 1982, 44, 103-158.

    無法下載圖示 全文公開日期 2017/02/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE