簡易檢索 / 詳目顯示

研究生: 關治平
Zhi-Ping Guan
論文名稱: 頻率調變連續波之光達距離量測
LiDAR Range Characterization through Frequency-Modulated Continuous Wave
指導教授: 徐世祥
Shih-Hsiang Hsu
林保宏
Pao-Hung Lin
口試委員: 張勝良
Sheng-Lyang Jang
林敬舜
ChingShun Lin
徐世祥
Shih-Hsiang Hsu
林保宏
Pao-Hung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 89
中文關鍵詞: 光達調變連續波雷射非線性掃頻希爾伯特轉換輔助干涉儀DAQ 重採樣點數
外文關鍵詞: LiDAR, Frequency-Modulated Continuous Wave Laser, Nonlinear Frequency Sweeping, Hilbert Transform, Auxiliary Interferometer, DAQ Resample Points
相關次數: 點閱:192下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • FMCW LiDAR 是一種能夠量測目標物的距離和速度,同時掃描並獲取影像的技術。它在智慧感測領域的應用非常廣泛,特別在自動駕駛汽車、工業 4.0 和虛擬混合實境等領域有很大的需求。這項技術可以提供更多的資訊,使得相關應用變得更加多樣與活躍性。
    FMCW LiDAR 是利用調變連續波雷射 (FMCW Laser) 做為量測距離的訊號光源,為了能縮小 FMCW LiDAR 的系統大小,本論文提出基於光纖的數種採樣方法。我們選擇使用希爾伯特轉換 (Hilbert Transform) 來修正連續波光學雷達中非線性掃頻造成的量測誤差。同時搭配數據採集(Data Acquisition, DAQ)的Resample Points與調變波長的範圍,不只可以大幅縮短輔助干涉儀需要的光程差,達到縮小體積的目的,還可以降低對DAQ採樣率的要求,使FMCW LiDAR成本大幅減少。最後再結合晶片型的Lattice Filter、直波導與Mach-Zehnder Directional Coupler (MZDC),使整個系統邁向晶片化。由於是提取目標物反射回來相位資訊,因此 FMCW LiDAR 的系統可以有效地降低相位雜訊與提升靈敏度,並與平衡光偵測器 (Balanced Photodetector, BPD) 相結合,在下一代 FMCW LiDAR 系統中開闢了新的可能性。

    在本論文實驗量測中,為了滿足Nyquist Theorem,採樣頻率必需為原始頻率的兩倍,也即是說DAQ採樣率的一半是系統可量測的最高頻率。由於光源是頻率隨時間的線性調變,所以DAQ的時間採樣率,即代表光源雷射頻率。主干涉儀之干涉波包的頻率週期與待測距離有關,當主干涉儀光程差(Optical Path Difference, OPD)愈大,提高DAQ採樣率才可將準確量測干涉波包。以實驗室1 Mega Sample Rate之DAQ為例子,為滿足Nyquist Theorem之重採樣頻率,0.5 Mega Sample Rate相對應主干涉儀的OPD為10公尺以上,當OPD超過10公尺時,我們提出以輔助干涉儀來做Hilbert Transformation重採樣,以準確測量主干涉儀之干涉波包,如此可降低對DAQ採樣率的需求,同時此重採樣之輔助干涉儀的光程差可縮小為主干涉儀光程差的1/10,其重採樣頻率準確度是可以預期的。之後結合晶片型的Lattice Filter、直波導與MZDC證明了線寬經過補償後會更優秀。我們使用上述方法,在1 Mega Sample Rate之DAQ的最終偵測距離增加到1052.5 cm,輔助干涉儀OPD為105cm,FWHM 為0.0043 cm,Standard Deviation 為0.006 cm。


    Frequency-modulated continuous-wave light detection and ranging (FMCW LiDAR) is a technology that can measure the distance and speed of a target and scan and acquire images simultaneously. It has a wide range of applications in intelligent sensing, especially in self-driving cars, Industry 4.0, and virtual mixed reality. LiDAR can provide more information and make the related applications more diversified and active.
    FMCW LiDAR uses FMCW Laser as the signal light source to measure the distance. For the FMCW LiDAR system size reduction, this thesis proposes several sampling methods based on optical fiber. Hilbert Transformation is chosen to correct the measurement error caused by the nonlinear sweeping of the continuous wave in LiDAR. Meanwhile, with data acquisition (DAQ) resample points and wavelength range modulation, not only the optical path difference of the auxiliary interferometer can be significantly shortened to achieve the purpose of small size, but also the requirements for DAQ sampling rate could be further enhanced so that the cost of FMCW LiDAR will be reduced. Finally, the system is chip-based by combining Lattice Filter, straight waveguide, and Mach-Zehnder Directional Coupler (MZDC). By extracting the phase information reflected from the target, the FMCW LiDAR system can effectively integrate the balanced photodetector (BPD), reduce phase noise and increase sensitivity to open up new possibilities in the next-generation FMCW LiDAR system.
    In the experimental measurements of this paper, to satisfy the Nyquist Theorem, the sampling frequency must be twice the original frequency, which means the DAQ sampling rate should be half of the system's maximum measurable frequency. Since the light source exhibits frequency modulation over time, the DAQ's time sampling rate represents the frequency of the laser light source. The frequency period of the interference wave packet in the main interferometer is related to the measured distance. When the optical path difference (OPD) of the main interferometer is larger, higher DAQ sampling rates are required to accurately measure the interference wave packet. For instance, in the case of a 1 Mega Sample Rate DAQ in the laboratory, to meet the Nyquist Theorem's resampling frequency, 0.5 Mega Sample Rate corresponds to the OPD of the main interferometer is more than 10 meters. When the OPD exceeds 10 meters, we propose using the auxiliary interferometer for Hilbert Transformation resampling to accurately measure the interference wave packet of the main interferometer. This approach reduces the demand for the DAQ sampling rate, and at the same time, the resampled optical path difference of the auxiliary interferometer can be reduced to 1/10 of the main interferometer's, ensuring the accuracy of the resampling frequency.
    Subsequently, by integrating chip-type Lattice Filter, straight waveguides, and MZDC, the compensation of linewidth is proven to be superior. Using the aforementioned methods, the final detection distance with a 1 Mega Sample Rate DAQ is increased to 1052.5 cm, the OPD of the auxiliary interferometer was 105 cm, with a FWHM of 0.0043 cm, and a standard deviation of 0.006 cm.

    摘要 4 Abstract 6 致謝 8 目錄 9 圖目錄 11 表目錄 15 第一章 緒論 16 第二章 LiDAR相關原理介紹 20 2.1 AMCW LiDAR對固定待測物量測理論 20 2.2 FMCW LiDAR對固定待測物量測理論 22 2.3 FMCW對移動待測物量測理論 27 2.4 同調長度 (Coherence Length) 31 第三章 重整非線性現象 32 3.1 造成非線性原因解釋 32 3.2 傳統輔助干涉儀重採樣的方法 34 3.3 Hilbert-Transform輔助干涉儀重採樣的方法 40 3.4 Hilbert-Transform主干涉儀重採樣的方法 45 第四章 重整非線性現象之變因 49 4.1 採樣率對FMCW 的影響 49 4.2輔助干涉儀對FMCW 的影響 50 4.3雷射調變頻寬對FMCW 的影響 52 4.4不同插值採樣法對FMCW 的影響 54 第五章 實驗結果與分析 57 5.1不同採樣方法的比較實驗圖 57 5.2不同插值採樣法的比較實驗圖 60 5.3 DAQ採樣率對FMCW 的影響實驗圖 63 5.4雷射調變頻寬對FMCW 的影響實驗圖 67 5.5不同輔助干涉儀對FMCW 的影響的比較實驗圖 71 5.6主干涉儀重採樣之後再與輔助干涉儀重採樣比較 75 5.7 主干涉儀之光程差之極限 78 5.8 加入矽晶片測量10.5m主干涉儀之光程差 80 第六章 結果與未來展望 85 6.1 結論 85 6.2 未來展望 87 參考文獻 88

    [1] L. Larry, "Time-of-flight camera – an introduction,” International Journal of Mass Spectrometry 206, pp. 251–266, 2001.

    [2] X. Attendu, R. M. Ruis, C. Boudoux, T. G. van Leeuwen, and D. J. Faber, "Simple and robust calibration procedure for k-linearization and dispersion compensation in optical coherence tomography," Journal of Biomedical Optics, 24(5), pp. 056001, 2019.

    [3] M. Okano and C. Chong, "Swept Source Lidar: simultaneous FMCW ranging and nonmechanical beam steering with a wideband swept source," Optics Express, 28(16), pp. 23898-23915, 2020.

    [4] T, Wu, S. Sun, X. Wang, H, Zhang, C. He, J. Wang, X. Gu, and Y. Liu, "Optimization of linear-wavenumber spectrometer for high-resolution spectral domain optical coherence tomography," Optics Communications, 405, pp. 171-176, 2017.

    [5] M. T. Tsai, I. J. Hsu, C. W. Lu, Y. M. Wang, C.W. Sun, Y. W. Kiang, and C. Yang, "Dispersion compensation in optical coherence tomography with a prism in a rapid-scanning optical delay line," Optical and Quantum Electronics, 37, pp. 1199-1212, 2005.

    [6] K. Iiyama, L. T. Wang, and K. I. Hayashi, "Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry," Journal of Lightwave Technology, 14(2), pp. 173-178, 1996.

    [7] T. Zhang, X. Qu, and F. Zhang, "Nonlinear error correction for FMCW lidar by the amplitude modulation method," Optics Express, 26(9), pp. 11519-11528, 2018.

    [8] S. Naresh, V. Arseny, R. George, L. Victor , and Y. Amnon, " Precise control of broadband frequency chirps using optoelectronic feedback," Vol. 17(18), pp. 15991-15999, 2009.

    [9] B. Behnam, A. M. Phillip, Q. Niels , S. Tae-Joon, M. Yasuhiro, and C. Ming, E. Bernhard, "Electronic-photonic integrated circuit for 3D microimaging, "IEEE Journal of Solid-State Circuits, Vol. 52(1), pp. 0018-9200, 2017.

    [10] S. Guang, Z. Fumin, Q. Xinghu, and M. Xiangsong, "High-resolution frequency-modulated continuous-wave laser ranging for precision distance metrology applications , " Optical Engineering 53(12), pp. 122402, 2014

    [11] M. Medhat, M. Sobee, H.M. Hussein, and O. Terra, "Distance measurement using frequency scanning interferometry with mode-hoped laser, " Optics & Laser Technology, pp. 80 209–21, 2016.

    [12] S. Guang, W. Wen, and Z. Fumin, "Precision improvement of frequency-modulated continuous-wave laser ranging system with two auxiliary interferometers," Optics Communications, 411, pp. 152–157, 2018.

    [13] A. Tae-Jung, L. Ji Yong, and K. Dug Young, "Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation," A pplied Optics, 44(35), pp. 060.2300, 2005.

    [14] S. Jiang, B. Liu, H. Wang, and B. Zhao, "Absolute distance measurement using frequency-scanning interferometry based on Hilbert phase subdivision," Sensors, 19, 5132, 2022.

    [15] F. Zhang, L. Yi, and X. Qu, “Simultaneous measurements of velocity and distance via a dual-path FMCW lidar system,” Optics Communications, 474, 126066, 2020.

    [16] S. Luming, S. Guang, L. Hong, L. Hongyi, Z. Fumin, and S. Dong, "Phase unwrapping and frequency points subdivision of the frequency sweeping interferometry based absolute ranging system, " Sensors, 22, 2904, 2022.

    [17] J. Min, K. Gyeong, J. Dawoon, K. Huiyeon, and K.Chang-Seok, "FMCW LiDAR using dual interferometer for improving distance measurement, "Imaging and Applied Optics Congress, pp. 46241, 2022.

    無法下載圖示 全文公開日期 2025/08/08 (校內網路)
    全文公開日期 2025/08/08 (校外網路)
    全文公開日期 2025/08/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE