簡易檢索 / 詳目顯示

研究生: 李侑价
Yu-Chieh Lee
論文名稱: 地下管線之非線性等效力-彈簧系統建立
Establishing Nonlinearly Equivalent Force-Spring Models for Underground Piping Systems
指導教授: 黃慶東
Ching-Tung Huang
口試委員: 陳瑞華
Rwey-Hua Cherng
鄭蘩
Van Jeng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 44
中文關鍵詞: 非線性地下管線
外文關鍵詞: nonlinear, underground piping systems
相關次數: 點閱:285下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要探討地下維生管線在考慮地下管線與周圍土壤發生滑動情形下之受震分析。研究首先以解析方式建立單一管線之等效力-彈簧系統關係,進而延伸推求連續管線含接頭之正解分析模式。建構之非線性等效力-彈簧系統,可據以建立地表土壤與管體滑動後之地表位移-管體變形增額矩陣關係式,以便執行非線性效應下之擬動態分析,研究並以一假想之地表位移函數作用下之管線分析為例,分析結果顯示,地下管線在管體與周圍土壤發生滑動後,將產生類似隔震效應之外力隔絕現象,因而對管線產生保護作用,並不會因大量地表位移的強制束縛產生管體或接頭的大幅變形。


The main objective of this research is to analyze underground piping systems under seismic excitation. An equivalent force-spring model is first developed for a underground pipe element considering slippage between the pipe element and the surroundings soil. The developed model is further used to construct an equivalent discrete force-spring model for an infinitely extended continuous piping system. An example problem based on an artificially generated ground deformation is used to illustrate the developed analytical procedure, and the system response behavior under the pipe-soil slippage effects. Analytical results show that the slippage between the pipeline and surroundings soil provides an excitation isolation mechanism. For this reason, both the joint deformation and pipe strain deformation are significantly relieved as compared to the non-slippage linear case.

目錄 目錄 I 圖目錄 III 第一章 緒論 1 1.1 研究背景與目的 1 1.2 文獻回顧 2 1.3 研究方法與內容 5 第二章 連續管線含接頭之理論模型 8 2.1 前言 8 2.2 單一管線之正解分析 9 2.2.1 單管力-位移關係式 11 2.2.2 單管考慮接頭效應分析 12 2.3 等效力-彈簧模式探討 13 2.3.1 單管無接頭等效彈簧系統建立 13 2.3.2 多管含接頭物理模式之通式 15 2.3.3 Case 1:等接頭位移差修正 17 2.3.4 Case 2:等管線位移差修正 20 2.3.5 Case 3:一端等接頭與一端等管線 23 第三章 連續管線含接頭之程式建立與分析 25 3.1 前言 25 3.2 程式建立之流程 25 3.2.1 管體與土壤未發生滑移階段(linear stage) 26 3.2.2 管體與土壤發生滑移階段(nonlinear stage) 27 3.3 實例分析 29 第四章 結論與建議 37 參考文獻 39

參考文獻
[1] Katayama, T.K., Kubo, K., and Sata, N. (1975), “Earthquake Damage to Water and Gas Distribution Systems”, Proceedings, U.S. National Conference on Earthquake Engineering, Ann Arbor, MI, pp. 396-405.
[2] O’Rourke, M. and Ayala G. (1993). “Pipeline damage due to wave propagation”, ASCE, Vol.119, No.GT9, pp.1491-1498.
[3] Toprak, S. (1998). “Earthquake Effects on Buried Lifelines Systems”, Ph. D., Cornell University.
[4] Tasi, J.S., Jou, L.D., and Lin, S.H. (2000). “Damage to Buried Water Supply Pipelines in the Chi-Chi Taiwan Earthquake and a Preliminary Evaluation of Seismic Resistance of Pipe Joints”, Journal of the Chinese Institute of Engineers, Vol.23, No.4, pp.395-408.
[5] 陳峻維 (2001),「集集大地震中東勢、石岡、豐原之天然氣管線災損害分析」,國立台北科技大學土木與防災研究所碩士論文。
[6] 王柏蘅 (2001),「集集大地震中埔里鎮之自來水管線災損分析」,國立台北科技大學土木與防災研究所碩士論文。
[7] 曾世賢 (2001),「921集集地震污水管線災損之GIS震害分析」,國立台北科技大學土木與防災研究所碩士論文。
[8] N. M. Newmark, (1967), “Problems in Wave Propagation in Soil and Rock”, Proceedings of the International Symposium on Wave Propagation and Dynamic Properties of Earth Materials, Albuquerque, New Mexico, August 1967, pp. 7-26.
[9] ASCE TCLEE(1999), “Guideline for the seismic evaluation and upgrade of water transmission facilities”, Technical Council of lifeline earthquake engineering Monograph No.15.
[10] Shinozuka, M. and Koike, T. (1979), “Estimation of Structural Strains in Underground Lifeline Pipes”, Technical Report No. NSF-PFP-79-15049-CU-4, Department of Civil Engineering and Engineering Mechanics, Columbia University.
[11] Tamura, C. (1976), “Design of Underground Structures by Considering Ground Displacement during Earthquakes”, Proceedings of the U.S. Japan Seminar on Earthquake Engineering, Research with Emphasis on Lifeline Systems, Tokyo, Japan, pp.417-433.
[12] A. Sakurai and T. Takahashi, (1969), “Dynamic Stresses of Underground Pipelines During Earthquakes”, Proceeding of the Fourth World Conference on Earthquake Engineering, Santiago, Chile, pp. 150-162.
[13] 黃郁翔,「地表震動變異性對埋置管線的影響」,國立中央大學土木工程學研究所碩士論文,羅俊雄教授指導, 民國七十八年六月
[14] H. H. Shah, and S. L. Chu, (1974), “Seismic Analysis of Underground Structural Elements”, Journal of the Power Division, ASCE, Vol. 100, NO. PO1, pp. 53-62.
[15] L. R. Wang, M. J. O’Rourke, and R. R. Pikul, “Seismic Vulnerability, Behavior and Design of Buried Pipelines”, Technical Report No.9, Department of Civil Engineering, Rensselaer Polytechnic Institute, Troy, New York, March 1979.
[16] L. N. H. Lee, T. Ariman, and C. C. Chen, (1980), “On Buckling of Buried Pipelines by Seismic Excitation”, Presented at the Pressure Vessel and Piping Conference, ASME, Paper No. 80-C2/PVP-75, San Francisco, California, August.
[17] H. D. Yun, and S. Kyriakides, (1984), “Buckling of a Heavy Beam on a Contacting Surface: A Mode for Beam Buckling of Buried Pipes”, Presented at the Pressure Vessels and Piping Conference and Exhibition, ASME, Paper No. 84-PVP-71, San Antonio, Texas, June.
[18] M. S. Tawfic, and T. D. O’Rourke, (1986), “Analysis of Pipelines Under Large Soil Deformations”, Report No. 86-1, School of Civil Engineering and Environmental Engineering, Cornell University Ithaca, New York, March.
[19] Elhmadi, K. and O’Rourke, M. J. (1989), ”Seismic wave propagation effects on straight jointed buried pipelines”, Technical Report NCEER-89-0022.
[20] Elhmadi, K. and O’Rourke, M. J. (1990), ”Seismic damage to segmented buried pipelines”, Engineering and Structural Dynamics, Vol. 19, No. 4, pp. 529-539.
[21] O’Rourke and Nordberg C. (1992), “Longitudinal permanent ground deformation effects on buried continuous pipelines”, Technical Report NCEER-92-0014.
[22] 中國自來水協會,「自來水設施耐震設計指南及解說2002」,中華民國自來水協會,2002。
[23] 中國國家標準,CNS10808延性鑄鐵管,1998。
[24] 中國國家標準,CNS13272延性鑄鐵管,1993。
[25] Singhal, A. C.,”Nonlinear Behavior of Ductile Iron Pipeline Joints”,Journal of Technical Topics in Civil Engineering, Vol.110, No. 1, pp. 29~37, 1984.
[26] Singhal, A. C.,”Axial, Bending and Torsional Behavior of Pipelines”,Journal of Technical Topics in Civil Engineering, Vol.110, No. 1, pp. 38~47, 1984.
[27] Singhal, A. C.,”Behavior of Jointed Ductile Iron Pipelines”,Journal of Transportation Engineering, Vol.110, No. 2, pp. 235~250, 1984.
[28] 日本國土開發技術研究—,「地下埋設管路耐震繼手技術基準(案)」,1977。
[29] 日本延性鑄鐵管協會技術資料,地震 管路 (JDPAT 05)。
[30] 蔡錦松,「自來水管線運用柔性接頭提升耐震性之研究」,中華民國自來水協會技術研究委員會,民國九十二年三月。
[31] 李雨南,“近斷層地下管線耐震需求與地動參數關聯性之研究” ,國立台灣科技大學營建工程系碩士論文,民國九十三年七月。
[32] 蔡錦松,「現有自來水管線(PVCP、DIP)接頭耐震檢測研究」,國立成功大學土木工程研究所,民國八十八年四月。
[33] Wang, L.R.L.,and O’Rourke , T.D. (1982). “Imposed ground strain and buried pipelines, “ASCE, Journal of Technical Councils, Vol. 108, TC2.
[34] N. A. Haskell, (1964), “Total Energy and Energy Spectral Density of Elastic Wave Radiation from Propagating Faults”, Bulletin Seism. Soc. America, 54(6), 1811-1841.
[35] N. A. Haskell, (1969), “Elastic Displacements in the Near-Field of a Propagating Fault”, Bulletin Seism, Soc. America, 59(2), 865-908.
[36] 黃裕家,“考慮接頭變位之近斷層地下管線受震分析” ,國立台灣科技大學營建工程系碩士論文,民國九十四年六月。
[37] 林建宏,“地下管線等效力-彈簧系統之建立與分析” ,國立台灣科技大學營建工程系碩士論文,民國九十五年六月。

QR CODE