簡易檢索 / 詳目顯示

研究生: 魏鈺芳
Yu-Fang Wei
論文名稱: 與具有緩存邊緣設備的最小延遲關聯之分析
Analysis of Minimal Delay Association with Cache-Enabled Edge Devices
指導教授: 鄭欣明
Shin-Ming Cheng
口試委員: 沈上翔
Shan-Hsiang Shen
黃琴雅
Chin-Ya Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 38
中文關鍵詞: 緩存最小延遲連接霧無線連接網路邊緣緩存延遲
外文關鍵詞: cache, minimal delay association, Fog radio access network, Edge cache, Delay
相關次數: 點閱:141下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在5G 的世代裡,傳統使用回傳到核心網(core network) 的傳輸方式已經無法負
荷如此大量的數據,為了讓人們快速且方便獲得所需的資料,除了使用設備到設
備的傳輸(Device to Device ;D2D),利用邊緣緩存的想法將流行的文件存放於本
地的設備或基地台也是能夠提升快速獲取資訊的方法,同時也能解決回傳的負
擔。在本論文中,我們設計一套連線選擇模式,並且使用” 最小延遲連接” 法作為
用戶與傳送文件裝置的連線條件,透過這個方法,在具有儲存功能的D2D 用戶
和有儲存功能的基地台(Fog access point; FAP) 環境中分析用戶在各種裝置中取
得文件的機率與所花費的延遲。就結果而言我們確實能降低總延遲,邊緣緩存也
幫助我們有效率的在本地找到文件。


In the 5G generation, the traditional transmission method back to the core network
can no longer load such a large amount of data. In order to allow people to quickly
and conveniently obtain the required file, in addition to using the device to device
(D2D) transmission, using the idea of edge caching to store popular files in a local
device or base station is also a way to improve quick access to information, and it can
also solve the burden of backhual. In this paper, we design a connection selection
mode and use the ”minimum delay connection” method as the connection condition
between the user and the file transmission device. Through this method,we analysis
the content hit probability and the delay in the environment of the cache-enabled
D2D user and the the Fog access point (FAP) . In terms of results, we can indeed
reduce the total delay, and edge caching also helps us find files locally.

摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 List of Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 網路模型和空間分佈. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 連接方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 緩存模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3.1 文件被存放機率. . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 連線模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4.1 四種連線模式與文件命中率. . . . . . . . . . . . . . . . . . . 14 3.4.2 連線模式選擇. . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 Mathematical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 文件成功傳送機率. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2 成功請求緩存服務的密度. . . . . . . . . . . . . . . . . . . . . . . . 25 4.3 傳送延遲. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

[1] M. Peng, S. Yan, K. Zhang, and C. Wang, “Fog-computing-based radio access
networks: Issues and challenges,” IEEE Network, vol. 30, no. 4, pp. 46–53, July
2016.
[2] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A survey
on mobile edge networks: Convergence of computing, caching and communications,”
IEEE Access, vol. 5, pp. 6757–6779, March 2017.
[3] E. Baştuǧ, M. Bennis, M. Kountouris, and M. Debbah, “Cache-enabled small
cell networks: Modeling and tradeoffs,” EURASIP J. Wireless Commun.Netw.,
vol. 2015, no. 1, p. 41, February 2015.
[4] S. Zhang, W. Sun, and J. Liu, “Spatially cooperative caching and optimization
for heterogeneous network,” IEEE Trans. Veh. Technol., vol. 68, no. 11, pp.
11 260–11 270, September 2019.
[5] R. Wang, R. Li, P. Wang, and E. Liu, “Analysis and optimization of caching
in fog radio access networks,” IEEE Trans. Veh. Technol., June 2019.
[6] B. Yin, M. Peng, S. Yan, and C. Hu, “Tradeoff between ergodic rate and delivery
latency in fog radio access networks,” IEEE Trans. Wireless Commun., January
2020.
[7] S. Yan, M. Peng, and W. Wang, “User access mode selection in fog computing
based radio access networks,” May 2016, pp. 1–6.
[8] H.-B. Kong, I. Flint, P. Wang, D. Niyato, and N. Privault, “Fog radio access
networks: Ginibre point process modeling and analysis,” IEEE Trans. Wireless
Commun., vol. 17, no. 8, pp. 5564–5580, 2018.
[9] Y. Sun, T. Dang, and J. Zhou, “User scheduling and cluster formation in fog
computing based radio access networks,” in Proc. IEEE ICUWB 2016, December
2016, pp. 1–4.
34
[10] E. Baştuğ, M. Kountouris, M. Bennis, and M. Debbah, “On the delay of geographical
caching methods in two-tiered heterogeneous networks,” in Proc.
IEEE SPAWC 2016, July 2016, pp. 1–5.
[11] S. Yan, M. Peng, M. A. Abana, and W. Wang, “An evolutionary game for user
access mode selection in fog radio access networks,” IEEE Access, vol. 5, pp.
2200–2210, January 2017.
[12] Z. Chen, J. Lee, T. Q. Quek, and M. Kountouris, “Cooperative caching and
transmission design in cluster-centric small cell networks,” IEEE Trans. Wireless
Commun., vol. 16, no. 5, pp. 3401–3415, March 2017.
[13] Z. Chen and M. Kountouris, “D2d caching vs. small cell caching: Where to
cache content in a wireless network?” in Proc. IEEE SPAWC2016, July 2016,
pp. 1–6.
[14] X. Xu, J. Wang, and X. Tao, “Analytical modeling for caching enabled ueto-
network relay in cellular networks,” IEEE Access, vol. 6, pp. 51 061–51 068,
September 2018.
[15] N. Pappas, Z. Chen, and I. Dimitriou, “Throughput and delay analysis of wireless
caching helper systems with random availability,” IEEE Access, vol. 6, pp.
9667–9678, Feb. 2018.
[16] M. Emara, H. ElSawy, S. Sorour, S. Al-Ghadhban, M.-S. Alouini, and T. Y.
Al-Naffouri, “Stochastic geometry model for multi-channel fog radio access networks,”
in Proc. IEEE WiOpt2017, May 2017, pp. 1–6.
[17] M. Tao, E. Chen, H. Zhou, and W. Yu, “Content-centric sparse multicast beamforming
for cache-enabled cloud ran,” IEEE Trans. Wireless Commun., vol. 15,
no. 9, pp. 6118–6131, June 2016.
[18] X. Song, Y. Geng, X. Meng, J. Liu, W. Lei, and Y. Wen, “Cache-enabled device
to device networks with contention-based multimedia delivery,” IEEE Access,
vol. 5, pp. 3228–3239, February 2017.
35
[19] H. Hsu and K.-C. Chen, “A resource allocation perspective on caching to achieve
low latency,” IEEE Commun. Lett., vol. 20, no. 1, pp. 145–148, November 2015.
[20] H. J. Kang, K. Y. Park, K. Cho, and C. G. Kang, “Mobile caching policies for
device-to-device (d2d) content delivery networking,” in Proc. IEEE INFOCOM
WKSHPS2014, May 2014, pp. 299–304.
[21] K. Li, C. Yang, Z. Chen, and M. Tao, “Optimization and analysis of probabilistic
caching in N -tier heterogeneous networks,” IEEE Trans. Wireless
Commun., vol. 17, no. 2, pp. 1283–1297, December 2017.
[22] Z. Yang, C. Pan, Y. Pan, Y. Wu, W. Xu, M. Shikh-Bahaei, and M. Chen,
“Cache placement in two-tier hetnets with limited storage capacity: Cache or
buffer?” IEEE Trans. Commun., vol. 66, no. 11, pp. 5415–5429, June 2018.
[23] S. H. Chae, T. Q. Quek, and W. Choi, “Content placement for wireless cooperative
caching helpers: A tradeoff between cooperative gain and content diversity
gain,” IEEE Trans. Wireless Commun., vol. 16, no. 10, pp. 6795–6807, July
2017.
[24] B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching in cellular
networks,” in Proc. IEEE ICC2015, June 2015, pp. 3358–3363.
[25] A. Peng, Y. Jiang, M. Bennis, F.-C. Zheng, and X. You, “Performance analysis
and caching design in fog radio access networks,” in Proc. GC Wkshps 2018,
December 2018, pp. 1–6.
[26] M. E. Newman, “Power laws, pareto distributions and zipf’s law,” Contemporary
physics, vol. 46, no. 5, pp. 323–351, October 2005.
[27] M. Peng and K. Zhang, “Recent advances in fog radio access networks: Performance
analysis and radio resource allocation,” IEEE Access, vol. 4, pp. 5003–
5009, August 2016.
[28] N. Deng, W. Zhou, and M. Haenggi, “The ginibre point process as a model
for wireless networks with repulsion,” IEEE Trans. Wireless Commun., vol. 14,
no. 1, pp. 107–121, January 2015.
36
[29] M. Peng, S. Yan, and H. V. Poor, “Ergodic capacity analysis of remote radio
head associations in cloud radio access networks,” IEEE Commun. Lett., vol. 3,
no. 4, pp. 365–368, April 2014.
[30] F. Kong, X. Sun, V. C. Leung, and H. Zhu, “Delay-optimal biased user association
in heterogeneous networks,” IEEE Trans. Veh. Technol., vol. 66, no. 8,
pp. 7360–7371, February 2017.
[31] “Summary of lecture 9,” https://www3.nd.edu/~mhaenggi/ee87021/summarysep-
22.pdf, accessed: 2020-7-1.
[32] H. S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews, “Modeling and
analysis of k-tier downlink heterogeneous cellular networks,” IEEE J. Sel. Areas
Commun., vol. 30, no. 3, pp. 550–560, March 2012.

無法下載圖示 全文公開日期 2026/02/01 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE