簡易檢索 / 詳目顯示

研究生: 劉庭
Ting Liu
論文名稱: 以次臨界水萃取自廢棄磷酸鋰鐵電池中回收鋰及磷
Recovery of Lithium and Phosphorus from Spent Lithium Iron Phosphate Batteries Using Subcritical Water Extraction
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 顧洋
Young Ku
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 111
中文關鍵詞: 酸萃取磷酸鋰鐵電池次臨界水萃取回收
外文關鍵詞: Acid leaching, lithium iron phosphate batteries, lithium, phosphorus, subcritical water extraction, recovery
相關次數: 點閱:282下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著世代演進以及科技進步,磷酸鋰鐵電池已被廣泛應用於大型儲能系統及電動汽車中。然而隨著全球電動車產業之快速發展,伴隨而來的是大量廢棄磷酸鋰鐵電池。由於磷酸鋰鐵電池中含有電解質及金屬,若廢電池未經適當處理,其所產生的有毒化學物質極可能對生物及環境造成危害。此外,近年來市場對於鋰資源及磷礦之需求持續成長,其可能造成鋰及磷相關礦物於未來面臨資源枯竭問題。為減少廢磷酸鋰鐵電池對環境造成之污染以及解決鋰磷資源枯竭問題,如何有效回收廢磷酸鋰鐵電池中之鋰及磷資源為一重要課題。
本研究目的主要為利用次臨界水萃取回收廢磷酸鋰鐵電池中之鋰及磷,並探討實驗參數如酸種類、酸濃度、固液比、反應溫度、反應時間及雙氧水添加量對萃取效率之影響。實驗結果顯示,萃取效率隨著酸濃度增加以及固液比減少而增加;反應溫度、反應時間及雙氧水添加量增加會造成磷酸鐵固體沈澱產生,進而降低鐵及磷之萃取效率。當使用濃度為0.5 N之鹽酸,固液比為10 g/L,反應溫度為100 °C,反應時間為5分鐘時,自廢磷酸鋰鐵電池中萃取鋰及磷可達到最佳效率,其效率分別為93.56%及94.71%。此外,由PHREEQC模擬結果可得知,將磷由浸出液選擇性沈澱為磷酸銨鎂(MgNH4PO4.6H2O)於熱力學上不可行,其原因為浸出液中含有其他高濃度金屬離子如鐵及錳,阻礙磷酸銨鎂沈澱生成。


Lithium iron phosphate (LFP) batteries have been widely applied in large-scale energy storage systems and electric vehicles (EVs). A significant amount of spent LFP batteries was generated worldwide recently due to the rapid development of EVs. Spent LFP batteries may cause environmental problems because of their harmful electrolyte and metals content. Furthermore, the growing demand for lithium (Li) and phosphorus (P) would lead to the depletion of these two resources in the coming years. Hence, it is crucial to develop an appropriate way for recycling Li and P from spent LFP batteries.
This study focused on the recovery of Li and P from spent LFP batteries utilizing subcritical water extraction (SWE). The effects of acid type (HCl and ascorbic acid), acid concentration (0.1-1.5 N), solid to liquid ratio (S/L) (10-40 g/L), reaction temperature (100-150 °C), reaction time (5-30 min), and H2O2 addition (0-2 vol%) were investigated.
From the experimental results, the leaching efficiency increased with increasing acid concentration and decreasing S/L. The reaction temperature, reaction time, and H2O2 addition would lead to the formation of FePO4 compounds, decreasing the leaching efficiency of Fe and P. The leaching efficiency of Li and P reached 93.56% and 94.71%, respectively, under the following conditions: 0.5 N of HCl, S/L of 10 g/L, reaction temperature of 100 °C, and reaction time of 5 min. Simulation results showed that selective precipitation of P as struvite (MgNH4PO4.6H2O) from the leaching solution was not feasible due to the high concentration of metal ions in the leaching solution.

摘要 I ABSTRACT II ACKNOWLEDGEMENT III OUTLINE IV LIST OF FIGURES VI LIST OF TABLES VIII CHAPTER 1 INTRODUCTION 1-1 1.1 Background 1-1 1.2 Objectives of study 1-2 CHAPTER 2 LITERATURE REVIEW 2-1 2.1 Lithium-ion batteries 2-1 2.2 Cathode material of lithium-ion batteries 2-4 2.3 Lithium 2-8 2.4 Phosphorus 2-10 2.6 Recovery of Li and P from spent LFP batteries 2-13 2.7 Subcritical water extraction (SWE) 2-17 CHAPTER 3 MATERIALS AND METHODS 3-1 3.1 Materials and reagents 3-1 3.2 Instruments 3-2 3.3 Experimental methods 3-3 3.3.1 Experimental framework and procedures 3-3 3.3.2 Characterization of spent LFP batteries 3-5 3.3.3 Subcritical water extraction (SWE) 3-7 3.4 Thermodynamic modeling software (PHREEQC) 3-9 CHAPTER 4 RESULTS AND DISCUSSION 4-1 4.1 Characterization of spent LFP batteries powder 4-1 4.1.1 Qualitative and semi-quantitative analysis 4-1 4.1.2 Quantitative analysis 4-4 4.2 Subcritical water extraction 4-8 4.2.1 Effect of acid type 4-8 4.2.2 Effect of acid concentration 4-11 4.2.3 Effect of solid to liquid ratio (S/L) 4-13 4.2.4 Effect of reaction temperature 4-15 4.2.5 Effect of reaction time 4-20 4.2.6 Characterization of solid residue 4-27 4.2.7 Effect of H2O2 addition 4-30 4.3 Precipitation simulation 4-33 CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 5-1 5.1 Conclusions 5-1 5.2 Recommendations 5-2 REFERENCES R-1 APPENDIX A-1 XRF results A-1 Calibration curve of ICP-OES A-2 Subcritical water extraction results A-5 PHREEQC coding A-8

Alipanah, M., Saha, A. K., Vahidi, E., and Jin, H. (2021). Value recovery from spent lithium-ion batteries: a review on technologies, environmental impacts, economics, and supply chain. Clean Technologies and Recycling, 1(2), 152-184. https://doi.org/10.3934/ctr.2021008
Alongi, K. S. and Shields, G. C. (2010). Chapter 8 – Theoretical calculations of acid dissociation constants: a review article. Annual Reports in Computational Chemistry, 6, 113-138. https://doi.org/10.1016/s1574-1400(10)06008-1
Baffes, J. and Koh, W. C. (2022). Fertilizer prices expected to remian higher for longer. World Bank Blogs. https://blogs.worldbank.org/opendata/fertilizer-prices-expected-remain-higher-longer
Bhuiyan, M. I., Mavinic, D. S., and Beckie, R. D. (2007). A solubility and thermodynamic study of struvite. Environ Technol, 28(9), 1015-1026. https://doi.org/10.1080/09593332808618857
Bian, D., Sun, Y., Li, S., Tian, Y., Yang, Z., Fan, X., and Zhang, W. (2016). A novel process to recycle spent LiFePO4 for synthesizing LiFePO4/C hierarchical microflowers. Electrochimica Acta, 190, 134-140. https://doi.org/10.1016/j.electacta.2015.12.114
Chen, X., Li, J., Kang, D., Zhou, T., and Ma, H. (2019). A novel closed-loop process for the simultaneous recovery of valuable metals and iron from a mixed type of spent lithium-ion batteries. Green Chemistry, 21(23), 6342-6352. https://doi.org/10.1039/c9gc02844g
Chen, X., Luo, C., Zhang, J., Kong, J., and Zhou, T. (2015). Sustainable recovery of metals from spent lithium-ion batteries: a green process. ACS Sustainable Chemistry & Engineering, 3(12), 3104-3113. https://doi.org/10.1021/acssuschemeng.5b01000
Cheng, X., Guo, G., Cheng, Y., Liu, M., and Ji, J. (2022). Effect of hydrogen peroxide on the recovery of valuable metals from spent LiNi0.6Co0.2Mn0.2O2 batteries. Energy Technology, 10(4). https://doi.org/10.1002/ente.202200039
Chu, H., Lie, J., and Liu, J. C. (2021). Rapid leaching of valuable metals from spent lithium-ion batteries with microwave irradiation using organic and inorganic acid. Journal of Sustainable Metallurgy, 7(2), 630-641. https://doi.org/10.1007/s40831-021-00362-2
Constantine, J., Lie, J., and Liu, J. C. (2022). Recovery of rare earth elements from spent NiMH batteries using subcritical water extraction with citric acid. Journal of Environmental Chemical Engineering, 10(3). https://doi.org/10.1016/j.jece.2022.108000
Cordell, D., Drangert, J. O., and White, S. (2009). The story of phosphorus: global food security and food for thought. Global Environmental Change, 19(2), 292-305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van der Bruggen, B., Verstraete, W., Rabaey, K., and Meesschaert, B. (2014). Global phosphorus scarcity and full-scale P-recovery techniques: a review. Critical Reviews in Environmental Science and Technology, 45(4), 336-384. https://doi.org/10.1080/10643389.2013.866531
Forte, F., Pietrantonio, M., Pucciarmati, S., Puzone, M., and Fontana, D. (2020). Lithium iron phosphate batteries recycling: an assessment of current status. Critical Reviews in Environmental Science and Technology, 51(19), 2232-2259. https://doi.org/10.1080/10643389.2020.1776053
Gao, W., Liu, C., Cao, H., Zheng, X., Lin, X., Wang, H., Zhang, Y., and Sun, Z. (2018). Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries. Waste Manag, 75, 477-485. https://doi.org/10.1016/j.wasman.2018.02.023
Glaser, J. A. (2012). Process intensification. Clean Technologies and Environmental Policy, 14(2), 155-160. https://doi.org/10.1007/s10098-012-0466-5
Golmohammadzadeh, R., Faraji, F., and Rashchi, F. (2018). Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: a review. Resources, Conservation and Recycling, 136, 418-435. https://doi.org/10.1016/j.resconrec.2018.04.024
Golroudbary, S. R., El Wali, M., and Kraslawski, A. (2019). Environmental sustainability of phosphorus recycling from wastewater, manure and solid wastes. Sci Total Environ, 672, 515-524. https://doi.org/10.1016/j.scitotenv.2019.03.439
He, K., Zhang, Z. Y., and Zhang, F. S. (2020). A green process for phosphorus recovery from spent LiFePO4 batteries by transformation of delithiated LiFePO4 crystal into NaFeS2. J Hazard Mater, 395, 122614. https://doi.org/10.1016/j.jhazmat.2020.122614
Huang, Y., Han, G., Liu, J., Chai, W., Wang, W., Yang, S., and Su, S. (2016). A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process. Journal of Power Sources, 325, 555-564. https://doi.org/10.1016/j.jpowsour.2016.06.072
Jin, H., Zhang, J., Wang, D., Jing, Q., Chen, Y., and Wang, C. (2022). Facile and efficient recovery of lithium from spent LiFePO4 batteries via air oxidation – water leaching at room temperature. Green Chemistry, 24(1), 152-162. https://doi.org/10.1039/d1gc03333f
Kumar, J., Neiber, R. R., Park, J., Ali Soomro, R., Greene, G. W., Ali Mazari, S., Young Seo, H., Hong Lee, J., Shon, M., Wook Chang, D., and Yong Cho, K. (2022). Recent progress in sustainable recycling of LiFePO4-type lithium-ion batteries: strategies for highly selective lithium recovery. Chemical Engineering Journal, 431. https://doi.org/10.1016/j.cej.2021.133993
Kumar, J., Shen, X., Li, B., Liu, H., and Zhao, J. (2020). Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4. Waste Manag, 113, 32-40. https://doi.org/10.1016/j.wasman.2020.05.046
Li, H., Xing, S., Liu, Y., Li, F., Guo, H., and Kuang, G. (2017). Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system. ACS Sustainable Chemistry & Engineering, 5(9), 8017-8024. https://doi.org/10.1021/acssuschemeng.7b01594
Li, L., Bian, Y., Zhang, X., Yao, Y., Xue, Q., Fan, E., Wu, F., and Chen, R. (2019). A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries. Waste Manag, 85, 437-444. https://doi.org/10.1016/j.wasman.2019.01.012
Li, L., Lu, J., Zhai, L., Zhang, X., Curtiss, L., Jin, Y., Wu, F., Chen, R., and Amine, K. (2018). A facile recovery process for cathodes from spent lithium iron phosphate batteries by using oxalic acid. CSEE Journal of Power and Energy Systems, 4(2), 219-225. https://doi.org/10.17775/cseejpes.2016.01880
Lie, J. and Liu, J. C. (2021). Closed-vessel microwave leaching of valuable metals from spent lithium-ion batteries (LIBs) using dual-function leaching agent: ascorbic acid. Separation and Purification Technology, 266. https://doi.org/10.1016/j.seppur.2021.118458
Lie, J., Tanda, S., and Liu, J. C. (2020). Subcritical water extraction of valuable metals from spent lithium-ion batteries. Molecules, 25(9). https://doi.org/10.3390/molecules25092166
Lin, E. Y., Rahmawati, A., Ko, J. H., and Liu, J. C. (2018). Extraction of yttrium and europium from waste cathode-ray tube (CRT) phosphor by subcritical water. Separation and Purification Technology, 192, 166-175. https://doi.org/10.1016/j.seppur.2017.10.004
Liu, R., Chen, J., Li, Z., Ding, Q., An, X., Pan, Y., Zheng, Z., Yang, M., and Fu, D. (2018). Preparation of LiFePO4/C cathode materials via a green synthesis route for lithium-ion battery applications. Materials (Basel), 11(11). https://doi.org/10.3390/ma11112251
Liu, W., Li, K., Wang, W., Hu, Y., Ren, Z., and Zhou, Z. (2022). Selective leaching of lithium ions from LiFePO4 powders using hydrochloric acid and sodium hypochlorite system. The Canadian Journal of Chemical Engineering, 101(4), 1831-1841. https://doi.org/10.1002/cjce.24617
Liu, W., Zhong, X., Han, J., Qin, W., Liu, T., Zhao, C., and Chang, Z. (2018). Kinetic study and pyrolysis behaviors of spent LiFePO4 batteries. ACS Sustainable Chemistry & Engineering, 7(1), 1289-1299. https://doi.org/10.1021/acssuschemeng.8b04939
Mahandra, H. and Ghahreman, A. (2021). A sustainable process for selective recovery of lithium as lithium phosphate from spent LiFePO4 batteries. Resources, Conservation and Recycling, 175. https://doi.org/10.1016/j.resconrec.2021.105883
Meng, F., Liu, Q., Kim, R., Wang, J., Liu, G., and Ghahreman, A. (2020). Selective recovery of valuable metals from industrial waste lithium-ion batteries using citric acid under reductive conditions: leaching optimization and kinetic analysis. Hydrometallurgy, 191. https://doi.org/10.1016/j.hydromet.2019.105160
Meshram, P., Pandey, B. D., and Mankhand, T. R. (2014). Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review. Hydrometallurgy, 150, 192-208. https://doi.org/10.1016/j.hydromet.2014.10.012
Nedelciu, C. E., Ragnarsdottir, K. V., Schlyter, P., and Stjernquist, I. (2020). Global phosphorus supply chain dynamics: assessing regional impact to 2050. Glob Food Sec, 26, 100426. https://doi.org/10.1016/j.gfs.2020.100426
Nitta, N., Wu, F., Lee, J. T., and Yushin, G. (2015). Li-ion battery materials: present and future. Materials Today, 18(5), 252-264. https://doi.org/10.1016/j.mattod.2014.10.040
Ofoegbu, S. U. (2019). Technological challenges of phosphorus removal in high-phosphorus ores: sustainability implications and possibilities for greener ore processing. Sustainability, 11(23). https://doi.org/10.3390/su11236787
Padhi, A. K., Nanjundaswamy, K. S., and Goodenough, J. B. (1997). Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of The Electrochemical Society, 144(4), 1188-1194. https://doi.org/10.1149/1.1837571
Paulino, J. F., Busnardo, N. G., and Afonso, J. C. (2008). Recovery of valuable elements from spent Li-batteries. J Hazard Mater, 150(3), 843-849. https://doi.org/10.1016/j.jhazmat.2007.10.048
Plaza, M. and Turner, C. (2015). Pressurized hot water extraction of bioactives. TrAC Trends in Analytical Chemistry, 71, 39-54. https://doi.org/10.1016/j.trac.2015.02.022
Rahmawati, A., Kuncoro, K. A., Ismadji, S., and Liu, J. C. (2020). Subcritical water extraction of indium from indium tin oxide scrap using organic acid solutions. Environmental Chemistry, 17(2). https://doi.org/10.1071/en19233
Sayma, S. and Sharba, K. (2019). Phosphorus fertilizer: The original and commercial sources. Phosphorous. https://doi.org/10.5772/intechopen.82240
Schott, C., Cunha, J. R., Van der Weijden, R. D., and Buisman, C. (2022). Phosphorus recovery from pig manure: dissolution of struvite and formation of calcium phosphate granules during anaerobic digestion with calcium addition. Chemical Engineering Journal, 437. https://doi.org/10.1016/j.cej.2022.135406
Shentu, H., Xiang, B., Cheng, Y. J., Dong, T., Gao, J., and Xia, Y. (2021). A fast and efficient method for selective extraction of lithium from spent lithium iron phosphate battery. Environmental Technology & Innovation, 23. https://doi.org/10.1016/j.eti.2021.101569
Smit, A. L., Bindraban, P. S., Schröder, J. J., Conijn, J. G., and Van der Meer, H. G. (2009). Phosphorus in agriculture: global resources, trends and developments. Plant Research International B.V., Wageningen, 282, 1-36. https://www.researchgate.net/publication/285661767
Song, Y., Xie, B., Song, S., Lei, S., Sun, W., Xu, R., and Yang, Y. (2021). Regeneration of LiFePO4 from spent lithium-ion batteries via a facile process featuring acid leaching and hydrothermal synthesis. Green Chemistry, 23(11), 3963-3971. https://doi.org/10.1039/d1gc00483b
Swain, B. (2017). Recovery and recycling of lithium: a review. Separation and Purification Technology, 172, 388-403. https://doi.org/10.1016/j.seppur.2016.08.031
Tang, H., Tan, F., Dai, X., Qiao, Y., and Zheng, X. (2020). Comprehensive recovery of mixed spent of LiNixCoyMn(1−x−y)O2 and LiFePO4. Journal of Material Cycles and Waste Management, 22(6), 1734-1743. https://doi.org/10.1007/s10163-020-01059-6
Tomon, C., Sarawutanukul, S., Phattharasupakun, N., Duangdangchote, S., Chomkhuntod, P., Joraleechanchai, N., Bunyanidhi, P., and Sawangphruk, M. (2022). Core-shell structure of LiMn2O4 cathode material reduces phase transition and Mn dissolution in Li-ion batteries. Commun Chem, 5(1), 54. https://doi.org/10.1038/s42004-022-00670-y
United States Geological Survey. (2022). Mineral commodity summeries 2022. https://doi.org/10.3133/mcs2022
Van Gerven, T. and Stankiewicz, A. (2009). Structure, energy, synergy, time – the fundamentals of process intensification. Industrial & Engineering Chemistry Research, 48(5), 2465-2474. https://doi.org/10.1021/ie801501y
Vanýsek, P. (2014). CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. 95th edition.
Villalba, G., Liu, Y., Schroder, H., and Ayres, R. U. (2008). Global phosphorus flows in the industrial economy from a production perspective. Journal of Industrial Ecology, 12(4), 557-569. https://doi.org/10.1111/j.1530-9290.2008.00050.x
Wang, M., Liu, K., Dutta, S., Alessi, D. S., Rinklebe, J., Ok, Y. S., and Tsang, D. C. W. (2022). Recycling of lithium iron phosphate batteries: status, technologies, challenges, and prospects. Renewable and Sustainable Energy Reviews, 163. https://doi.org/10.1016/j.rser.2022.112515
Wang, X., Wang, X., Zhang, R., Wang, Y., and Shu, H. (2018). Hydrothermal preparation and performance of LiFePO4 by using Li3PO4 recovered from spent cathode scraps as Li source. Waste Manag, 78, 208-216. https://doi.org/10.1016/j.wasman.2018.05.029
Wang, Y., Tu, Y., Xu, Z., Zhang, X., Chen, Y., and Yang, E. (2022). A promising method for recovery of graphite and cathode materials from spent lithium-ion batteries. Ionics, 28(6), 2603-2611. https://doi.org/10.1007/s11581-022-04542-2
Wang, Z., Guo, S., and Ye, C. (2016). Leaching of copper from metal powders mechanically separated from waste printed circuit boards in chloride media using hydrogen peroxide as oxidant. Procedia Environmental Sciences, 31, 917-924. https://doi.org/10.1016/j.proenv.2016.02.110
Wu, D. Y., Wang, D. X., Liu, Z. Q., Rao, S., and Zhang, K. F. (2022). Selective recovery of lithium from spent lithium iron phosphate batteries using oxidation pressure sulfuric acid leaching system. Transactions of Nonferrous Metals Society of China, 32(6), 2071-2079. https://doi.org/10.1016/s1003-6326(22)65931-4
Wu, Y., Zhou, K., Zhang, X., Peng, C., Jiang, Y., and Chen, W. (2022). Aluminum separation by sulfuric acid leaching-solvent extraction from Al-bearing LiFePO4/C powder for recycling of Fe/P. Waste Manag, 144, 303-312. https://doi.org/10.1016/j.wasman.2022.04.007
Xiao, X., Hoogendoorn, B. W., Ma, Y., Ashoka Sahadevan, S., Gardner, J. M., Forsberg, K., and Olsson, R. T. (2021). Ultrasound-assisted extraction of metals from Lithium-ion batteries using natural organic acids. Green Chemistry, 23(21), 8519-8532. https://doi.org/10.1039/d1gc02693c
Xu, L., Liu, X., Sun, K., Fu, R., and Wang, G. (2022). Corrosion behavior in magnesium-based alloys for biomedical applications. Materials (Basel), 15(7). https://doi.org/10.3390/ma15072613
Yabalak, E. and Gizir, M. (2013). Subcritical and supercritical fluid extraction of heavy metals from sand and sewage sludge. Journal of the Serbian Chemical Society, 78(7), 1013-1022. https://doi.org/10.2298/jsc120321123y
Yadav, P., Jie, C. J., Tan, S., and Srinivasan, M. (2020). Recycling of cathode from spent lithium iron phosphate batteries. J Hazard Mater, 399, 123068. https://doi.org/10.1016/j.jhazmat.2020.123068
Yang, Y., Meng, X., Cao, H., Lin, X., Liu, C., Sun, Y., Zhang, Y., and Sun, Z. (2018). Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process. Green Chemistry, 20(13), 3121-3133. https://doi.org/10.1039/c7gc03376a
Zhang, J., Wen, C., Zhang, H., Duan, Y., and Ma, H. (2020). Recent advances in the extraction of bioactive compounds with subcritical water: a review. Trends in Food Science & Technology, 95, 183-195. https://doi.org/10.1016/j.tifs.2019.11.018
Zheng, R., Zhao, L., Wang, W., Liu, Y., Ma, Q., Mu, D., Li, R., and Dai, C. (2016). Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method. RSC Advances, 6(49), 43613-43625. https://doi.org/10.1039/c6ra05477c
Zhou, Y., Lu, J., Deng, C., Zhu, H., Chen, G. Z., Zhang, S., and Tian, X. (2016). Nitrogen-doped graphene guided formation of monodisperse microspheres of LiFePO4 nanoplates as the positive electrode material of lithium-ion batteries. Journal of Materials Chemistry A, 4(31), 12065-12072. https://doi.org/10.1039/c6ta03440c

無法下載圖示
全文公開日期 2028/07/24 (校外網路)
全文公開日期 2028/07/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE