簡易檢索 / 詳目顯示

研究生: 陳明宏
Ming-Hung Chen
論文名稱: 交流-直流-交流功率控制器於三相雙繞組永磁式同步風力發電機系統之應用
Application of AC-DC-AC Power Controllers to Wind Power Systems with Three-Phase Double-Winding Permanent-Magnet Synchronous Generators
指導教授: 葉勝年
Sheng-Nian Yeh
黃仲欽
Jonq-Chin Hwang
口試委員: 劉添華
Tian-Hua Liu
陳建富
Jiann-Fuh Chen
賴炎生
Yen-Shin Lai
林法正
Faa-Jeng Lin
潘晴財
Ching-Tsai Pan
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 112
中文關鍵詞: 三相雙繞組永磁式同步發電機三相全橋半控型整流器昇/降壓式直流截波器單相三階層直流-交流功率轉換器具相位補償之振幅鎖定迴路
外文關鍵詞: three-phase double-winding permanent-magnet sync, half-controlled three-phase rectifier, buck/boost dc chopper, single-phase three-level dc-to-ac power converte, phase-compensated amplitude-locked loop
相關次數: 點閱:474下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文旨在研製應用於三相雙繞組永磁式同步風力發電機系統之交流-直流-交流功率控制器。本系統設計交流-直流-交流功率轉換器,將風力發電機所產生之變動頻率及電壓之三相電源轉換為固定頻率及電壓之單相電源。文中採用三相雙繞組永磁式同步發電機,不僅可提高發電機之容量,亦可降低整流後直流電壓的漣波成分。本文之系統藉偵測功率轉換器之直流鏈電壓、發電機之線電壓及線電流,調節發電機之功率,使永磁式同步發電機達到定電流及定功率的輸出,可與市電網路並聯或獨立運轉。
在發電機側之交流-直流功率轉換器分析方面,本文推導三相全橋半控型整流器之數學模式,並採用三相開關循序切換控制,不需轉速回授元件即可達成具變速性能之永磁式同步發電機功率控制,以達到發電機與直流鏈功率平衡,提供穩定的直流電源輸出。
蓄電池組以昇/降壓式直流截波器作為放電與充電之路徑,風力不足時使用定電壓控制,提供負載能量,充電則採二階段式定電流-定電壓控制,完成能源調節及分配。當風速變化時,依據負載所需之功率,決定電池組儲、釋能之控制,維持負載端電壓為固定值,而不受發電機轉速的影響,同時,本系統多餘之電力亦可儲存於蓄電池組。
負載側或並聯市電側之直流-交流功率轉換器將採用單相三階層直流-交流功率轉換器,以減少輸出電壓之諧波含量,並使用低損失之單極式正弦脈波寬度調變技術以提高轉換效率。系統在獨立運轉及與市電網路並聯運轉時,本文分別採用電壓控制模式與電流控制模式,且完成控制參數的設計。在控制策略方面,則採用具相位補償之振幅鎖定迴路,於負載變動下提供快速響應、穩定且低諧波失真之單相電壓源予負載使用。
本文已建立交流-直流、直流-直流及直流-交流功率轉換器之模式,並以套裝軟體Matlab/Simulink模擬,作為系統控制器設計之依據。實體製作方面,採用高性能及低成本之數位信號處理器(DSP,TMS320F2812)為整體系統之控制核心,其控制策略皆由軟體程式完成,不但減少硬體電路成本,並增加系統運作可靠度。本文已完成750W發電系統雛形,由模擬及實測結果顯示,本系統在獨立運轉下,其額定輸出電壓有效值為110/220V,頻率為60Hz,在並聯運轉下,可提供功率至電力網路,且整體系統之運轉效率為83%。單相三階層變流器輸出電壓之總諧波失真率為1.23%,符合IEEE Std. 519之規範。


This dissertation presents the application of ac-dc-ac power controllers to wind power systems with three-phase double-winding permanent-magnet synchronous generators. In this system, ac-to-dc and dc-to-ac power converters are proposed to convert three-phase electrical power generated by wind with varying-voltage and varying-frequency to single-phase electrical power with constant-voltage and constant-frequency. The proposed three-phase double-winding permanent-magnet synchronous generator, which consists of two identical windings in stator, can not only yield higher power density than that of its single-winding counterpart, but also reduce the voltage ripple at the output of rectifiers. The output power of the overall system is adjusted by detecting the dc-link voltage of power converters as well as the line voltage and line current of the generator. The system can be operated in both stand-alone and grid-connected fashions.
In ac-to-dc power converter, the mathematical model of half-controlled, three-phase rectifier is built to implement the sequential-switching of switches on power converter, therefore, no rotor position detector is needed for power converter connected with generators. This can yield power balance between generator and dc-link to supply the dc power stably.
The buck/boost dc chopper is designed to charge and discharge the battery set. The two-stage fixed-current and fixed-voltage control is adopted to charge the battery set, while fixed-voltage control method is used to supply load power when wind speed is low. On the other hand, if power imbalance between generator and dc-link occurs, the buck/boost dc chopper can adjust the power balance through batteries and sustain a constant dc-link voltage. In addition, the surplus electricity can be stored into batteries to enhance the overall efficiency of the proposed system.
A single-phase, three-level dc-to-ac power converter using unipolar switching method with low switching loss is designed to reduce the output voltage harmonics and increase conversion efficiency. The realized system can be operated either in a stand-alone fashion or connected with power grid by voltage and current control modes, respectively. The dc-to-ac power converter operated under voltage-controlled mode using phase-compensated amplitude-locked loop algorithm can provide a single-phase source with fast response, stable and low harmonic distortion power to load.
In this dissertation, the mathematical models of ac-to-dc, dc-to-ac power converters, and buck/boost dc chopper are built and simulated by Matlab/Simulink. Then, a high-performance and low-cost digital signal processor (DSP, TMS320F2812) is used to control the system for reducing the circuit complexity. A prototype of 750 W hybrid power conversion system is developed under stand-alone and grid-connected operations, separately. The system can feed proper power to the grid in grid-connected operation, while for stand-alone operation, the rated output voltage is 110/220 V and the frequency is 60 Hz. Besides, the experimental data show that the efficiency of the whole system in grid-connected operation reaches 83% and the voltage harmonic distortion of single-phase, three-level dc-to-ac power converter output is 1.23%, which complies with IEEE Std. 519.

中文摘要 ………………………………………………………… I 英文摘要 ………………………………………………………… III 誌謝 ………………………………………………………… V 目錄 ………………………………………………………… VI 符號說明 ………………………………………………………… VIII 圖表索引 ………………………………………………………… XIII 第一章 緒論 ………………………………………………… 1 1.1 研究動機 …………………………………………… 1 1.2 文獻探討 …………………………………………… 1 1.3 研究方法 …………………………………………… 4 1.4 本文重要成果 ……………………………………… 6 1.5 論文大綱 …………………………………………… 7 第二章 風力驅動之永磁式同步發電機系統 ……………… 9 2.1 前言 ………………………………………………… 9 2.2 風力發電原理及特性 ……………………………… 9 2.3 風力模擬之實驗平台 ……………………………… 13 2.4 三相雙繞組永磁式同步發電機之數學模式 ……… 15 2.5 結語 ………………………………………………… 18 第三章 三相交流-直流功率轉換器之分析及控制 ………… 19 3.1 前言 ………………………………………………… 19 3.2 三相交流-直流功率轉換器之比較 ………………… 19 3.3 三相全橋半控型整流器之控制 …………………… 20 3.4 結語 ………………………………………………… 25 第四章 蓄電池儲能系統之分析及控制 …………………… 26 4.1 前言 ………………………………………………… 26 4.2 昇/降壓式直流截波器 ……………………………… 26 4.2.1 降壓式直流截波器 ………………………………… 27 4.2.2 昇壓式直流截波器 ………………………………… 28 4.2.3 昇/降壓式直流截波器之控制 ……………………… 30 4.3 結語 ………………………………………………… 31 第五章 單相直流-交流功率轉換器之分析及控制 ………… 32 5.1 前言 ………………………………………………… 32 5.2 單相直流-交流功率轉換器之分析 ………………… 32 5.2.1 單相雙階層直流-交流功率轉換器 ………………… 32 5.2.2 單相三階層直流-交流功率轉換器 ………………… 37 5.3 三階層脈波寬度調變策略 ………………………… 39 5.4 多繞組變壓器與低通濾波器之分析與設計 ……… 42 5.5 單相三階層直流-交流功率轉換器之控制 ………… 45 5.5.1 電壓控制模式 ……………………………………… 45 5.5.2 具相位補償之振幅鎖定迴路 ……………………… 46 5.6 結語 ………………………………………………… 48 第六章 風力發電系統之能量管理 ………………………… 49 6.1 前言 ………………………………………………… 49 6.2 最大功率追蹤策略 ………………………………… 49 6.3 能源管理策略 ……………………………………… 53 6.3.1 獨立供電系統 ……………………………………… 53 6.3.2 市電網路並聯系統 ………………………………… 56 6.4 電壓及電流調節器之設計 ………………………… 59 6.4.1 未加積分器之電流調節器 ………………………… 60 6.4.2 加上積分器之電流調節器 ………………………… 64 6.5 結語 ………………………………………………… 66 第七章 系統製作與模擬及實測結果 ……………………… 67 7.1 前言 ………………………………………………… 67 7.2 硬體電路 …………………………………………… 67 7.3 軟體程式 …………………………………………… 71 7.4 模擬及實測結果 …………………………………… 78 7.4.1 三相全橋半控型整流器 …………………………… 78 7.4.2 昇/降壓式直流截波器 ……………………………… 82 7.4.3 單相直流-交流功率轉換器 ………………………… 85 7.4.4 風力發電系統之能量管理 ………………………… 90 7.5 結語 ………………………………………………… 97 第八章 結論與建議 ………………………………………… 98 8.1 結論 ………………………………………………… 98 8.2 建議 ………………………………………………… 100 參考文獻 ………………………………………………………… 101 附錄 ………………………………………………………… 107 作者簡介 ………………………………………………………… 111

[1] L. Surugiu and I. Paraschivoiu, “Wind Power Contribution to Environmental Issues,” The 1st World Wind Energy Conference and Exhibition, Berlin, Germany, PB2.1 (2002).
[2] 翁萬德,「台灣地區風力時序長程機率模型之建立及風力發電可行性之分析」,行政院國家科學委員會電力科技產業學術合作研究計畫,民國八十八年。
[3] 楊金石,「風力發電之監控設備對系統特性的影響」,台電工程月刊,第516期,第21~31頁,民國八十年。
[4] 蘇華宗,「澎湖中屯風力發電介紹」,電機技師第93期,第39~48頁,民國九十一年。
[5] N. Hatziargyriou and A. Zervos, “Wind Power Development in Europe,” IEEE Proceedings, Vol. 89, No. 12, pp. 1765-1782 (2001).
[6] E. Denny and M. O’Malley, “Wind Generation, Power System Operation, and Emissions Reduction,” IEEE Transactions on Power Systems, Vol. 21, No. 1, pp. 341-347 (2006).
[7] G. Saccomando and J. Svensson, “Transient Operation of Grid-Connected Voltage Source Converter under Unbalanced Voltage Conditions,” IEEE IAC Conference Record, pp. 2419-2424 (2001).
[8] J. A. Gow and C. D. Manning, “Photovoltaic Converter System Suitable for Use in Small Scale Stand-Alone or Grid Connected Applications,” IEE Proceedings-Electric Power Applications, Vol. 147, No. 6, pp. 535-543 (2000).
[9] J. F. Walker, Wind energy technology, John Wiley and Sons, New York, pp. 166-188 (1997).
[10] M. Karrari, W. Rosehart and O. P. Malik, “Comprehensive Control Strategy for a Variable Speed Cage Machine Wind Generation Unit,” IEEE Transactions on Energy Conversion, Vol. 20, No. 2, pp. 415-423 (2005).
[11] M. G. Simoes, B. K. Bose and R. J. Spiegel, “Design and Performance Evaluation of a Fuzzy-Logic-Based Variable-Speed Wind Generation System,” IEEE Transactions on Industry Applications, Vol. 33, No. 4, pp. 956-965 (1997).
[12] M. Naidu and J. Walters, “A 4-kW 42-V Induction-Machine-Based Automotive Power Generation System with a Diode Bridge Rectifier and a PWM Inverter,” IEEE Transactions on Industry Applications, Vol. 39, No. 5, pp. 1287-1293 (2003).
[13] Y. Zhao and T. A. Lipo, “Modeling and Control of a Multi-Phase Induction Machine With Structural Unbalance,” IEEE Transactions on Energy Conversion, Vol. 11, No. 3, pp. 570–577 (1996).
[14] 黃勝源,無轉子角位置偵測器之永磁式同步電動機驅動器之研製,國立台灣科技大學電機研究所碩士論文,民國九十三年。
[15] 謝明志,六相永磁式同步發電機之風力發電系統研製,國立台灣科技大學電機研究所碩士論文,民國九十五年。
[16] J. W. Dixon and B. T. Ooi, “Indirect Current Control of a Unity Power Factor Sinusoidal Current Boost Type Three-Phase Rectifier,” IEEE Transactions on Industrial Electronics, Vol. 35, No. 4, pp. 508-515 (1988).
[17] K. Jun, M. D. Manjrekar and T. A. Lipo, “Performance Improvement of Half Controlled Three Phase PWM Boost Rectifier,” IEEE PESC Conference Record, pp. 319 –324 (1999).
[18] C. T. Pan and Y. S. Huang, “A Truly Error Bounded Current Controller for Three-Phase AC/DC Boost Converter,” IEEE IECON Conference Record, pp. 359-364 (2002).
[19] 曾宏舜,高功因三相開關型整流器之研製,國立台灣科技大學電機研究所碩士論文,民國八十七年。
[20] S. J. Chiang, K. T. Chang and C. Y. Yen, “Residential Photovoltaic Energy Storage System,” IEEE Transactions on Industrial Electronics, Vol. 45, No. 3, pp. 385-394 (1998).
[21] F. A. Himmelstoss, “Analysis and Comparison of Half-Bridge Bidirectional DC-DC Converters,” IEEE PESC Conference Record, pp. 922-928 (1994).
[22] Y. H. Kim and H. D. Ha, “Design of Interface Circuits with Electrical Battery Models,” IEEE Transactions on Industrial Electronics, Vol. 44, No. 1, pp. 81-86 (1997).
[23] 陳德聖,軟式切換電池充電器及檢測器之研製,國立台灣科技大學電機研究所碩士論文,民國八十九年。
[24] M. J. Ryan and R. D. Lorenz, “A Synchronous-Frame Controller for a Single-Phase Sine Wave Inverter,” IEEE APEC Conference Record, pp. 813-819 (1997).
[25] S. Nonaka, “A Utility-Connected Residential PV System Adapted a Novel Single-Phase Composite PWM Voltage Source Inverter,” IEEE PVSC Conference Record, pp. 1064-1068 (1994).
[26] R. O. Cáceres and I. Barbi, “A Boost DC-AC Converter: Analysis, Design, and Experimentation,” IEEE Transactions on Power Electronics, Vol. 14, No. 1, pp. 134-141, (1999).
[27] G. Carrara, S. Gardella, M. Marchesoni, R. Salutari and G. Sciutto, “A New Multilevel PWM Method: A Theoretical Analysis,” IEEE Transactions on Power Electronics, Vol. 7, No. 3, pp. 497-505 (1992).
[28] M. H. Nehrir, B. J. LaMeres, G. Venkataramanan, V. Gerez and L. Alvarado, “An Approach to Evaluate the General Performance of Stand-Alone Wind/Photovoltaic Generating Systems,” IEEE Transactions on Energy Conversion, Vol. 15, No. 4, pp. 433-439 (2000).
[29] F. Valenciaga, P. F. Puleston and P. E. Battaiotto, “Power Control of a Solar/Wind Generation System Without Wind Measurement: A Passivity/Sliding Mode Approach,” IEEE Transactions on Energy Conversion, Vol. 18, No. 4, pp. 501-507 (2003).
[30] K. C. A. de Souza, M. R. de Castro and F. Antunes, “A DC/AC Converter for Single-Phase Grid-Connected Photovoltaic Systems,” IEEE IECON Conference Record, pp. 3268-3273 (2002).
[31] A. E. Haniotis, K. S. Soutis, A. G. Kladas and J. A. Tegopouls, “Grid Connected Variable Speed Wind Turbine Modeling, Dynamic Performance and Control,” IEEE PES Conference Record, pp. 759-764 (2004).
[32] 蘇育生,以數位信號處理器為基礎之並聯型單相全橋不斷電系統之研製,國立台灣科技大學電機工程研究所碩士論文,民國九十三年。
[33] Z. Chen and E. Spooner, “Grid Power Quality with Variable Speed Wind Turbines,” IEEE Transactions on Energy Conversion, Vol. 16, No. 2, pp. 148-154 (2001).
[34] A. B. Raju, K. Chatterjee and B. G. Fernandes, “A Simple Maximum Power Point Tracker for Grid Connceted Variable Speed Wind Energy Conversion System with Reduced Switch Count Power Converter,” IEEE PESC Conference Record, pp. 748-753 (2003).
[35] S. H. Song, S. I. Kang and N. K. Hahm, “Implementation and Control of Grid Connected AC-DC-AC Power Converter for Variable Speed Wind Energy Conversion System,” IEEE APEC Conference Record, pp. 154-158, (2003).
[36] 林聖賢,市電併聯型太陽能與風力發電系統研製,國立中正大學電機工程研究所碩士論文,民國九十二年。
[37] S. J. Kim and S. I. Sul, “New Control Scheme for AC-DC-AC Converter without DC Link Electrolytic Capacitor,” IEEE PESC Conference Record, pp. 300-306 (1993).
[38] R. Wu, S. B. Dewan and G. R. Slemon, “A PWM AC-to-DC Converter with Fixed Switching Frequency,” IEEE Transactions on Industry Applications, Vol. 26, No. 5, pp. 880-885 (1990).
[39] H. J. Beukes and J. H. R. Enslin, “Analysis of a New Compound Converter as MPPT, Battery Regulator and Bus Regulator for Satellite Power Systems,” IEEE PESC Conference Record, pp. 846-852 (1993).
[40] C. Hua and C. Shen, “Control of DC/DC Converters for Solar Energy System with Maximum Power Tracking,” IEEE IECON Conference Record, pp. 827-832 (1997).
[41] F. Z. Peng, J. S. Lai, J. W. McKeever and J. VanCoevering, “A Multilevel Voltage-Source Inverter with Separate DC Sources for Static Var Generation,” IEEE Transactions on Industry Applications, Vol. 32, No. 5, pp. 1130-1138 (1996).
[42] TMS320F28xx DSP Controllers CUP, System, and Instruction Set vol. 1 & vol. 2, Texas Instruments (2004).
[43] 曹培熙,大學物理學,第85~98頁,台北,曉園出版社,民國七十八年。
[44] Albert Betz, Wind-Energie und ihre Ausnutzung durch Windmhlen, (Bandenhoeck & Ruprect, Gttingen, 1926). Facsimile edition by kobuch Verlag, Staufen, (1994).
[45] 呂威賢、江懷德,「全球風電推廣應用現況與展望」,工業技術研究院能源與資源研究所潔淨能源技術組,第1~20頁,民國九十一年。
[46] 工業技術研究院能源研究所,「小型風力發電機的葉片數目,疏密度和尖端速度比的選擇」,工業技術研究院能源與資源研究所潔淨能源技術組,民國七十一年。
[47] 鄭淑珠,台灣地區風速與風向分佈之分析,國立台灣海洋大學河海工程研究所碩士論文,民國九十一年。
[48] 蔡漢隆,風力發電之電力品質量測與分析,國立台北科技大學電機工程研究所碩士論文,民國九十二年。
[49] 江榮城,「國內風力發電運轉經驗」,經濟部工安環保報導第28期,民國九十四年。
[50] 呂威賢,「再生能源專題報導-風的故事」,科學發展月刊第383期,民國九十三年。
[51] 莊月璇,台灣地區風速機率分佈之研究,國立中央大學土木工程研究所碩士論文,民國八十九年。
[52] A. G. Abo-Khalil and D. C. Lee, “Dynamic Modeling and Control of Wind Turbines for Grid-Connected Wind Generation System,” IEEE PESC Conference Record, pp. 1-6 (2006).
[53] 王俊超,六相永磁式同步電動機驅動器之分析及研製,國立台灣科技大學電機研究所碩士論文,民國九十四年。
[54] Y. Jang and M. M. Jovanovic, “A Comparative Study of Single-Switch, Three-Phase, High-Power-Factor Rectifiers,” IEEE Transactions on Industry Applications, Vol. 34, No. 6, pp. 1327-1334 (1998).
[55] K. Ohtsuka, K. Matsui, I. Yamamoto and Y. Yao, “A Novel Three-Phase Diode Rectifier with Sinusoidal Input Current,” IEEE ISIE Conference Record, pp. 910-915 (2001).
[56] J. W. Kolar, H. Ertl and F. C. Zach, “A Comprehensive Design Approach for a Three-Phase High-Frequency Single-Switch Discontinuous-Mode Boost Power Factor Corrector Based on Analytically Derived Normalized Converter Component Ratings,” IEEE Transactions on Power Electronics, Vol. 31, No. 3, pp. 569-582 (1995).
[57] 曾祥雲,單相功率轉換器應用於永磁式同步發電機之風力發電系統研製,國立台灣科技大學電機研究所碩士論文,民國九十三年。
[58] T. G. Habetler, “A Space Vector-Based Rectifier Regulator for AC/DC/AC Converters,” IEEE Transactions on Power Electronics, Vol. 8, No. 1, pp. 30-36 (1993).
[59] 陳守誠,太陽能與風能發電複合系統之研製,國立台灣科技大學電機研究所碩士論文,民國九十二年。
[60] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, The 2nd edition, Wiley (1995).
[61] 呂文隆,蓄電池儲能系統之設計與製作,國立台灣工業技術學院工程技術研究所電機工程技術學程碩士論文,民國八十一年。
[62] F. A. Himmelstoss, “Analysis and Comparison of Half-bridge Bidirectional DC-DC Converters,” IEEE PESC Conference Record, pp. 922-928 (1994).
[63] W. L. Lu and S. N. Yeh, “Design and Implementation of Uninterruptible Power Supplies for Fluorescent Lamps with Electronic Ballast,” Proceedings of National Science Council Part A : Physical Science and Engineering, Vol. 23, No. 6, pp. 728-735 (1999).
[64] 李仲毅,全數位化之單相變流器設計與製作,國立台灣大學電機工程所碩士論文, 民國八十七年。
[65] V. G. Agelidis, D. M. Baker, W. B. Lawrance and C. V. Nayer, “A Multilevel PWM Inverter Topology for Photovoltaic Applications,” IEEE ISIE Conference Record, pp. 589-594 (1997).
[66] F. S. Kang, S. J. Park, H. W. Park and C. U. Kim, “A Novel High Performance Single-Phase 3-Level PWM Inverter,” IEEE ISIE Conference Record, pp. 922-927 (2001).
[67] R. D. MIDDLEBROOK and S. CUK, “A General Unified Approach to Modeling Switching Converter Power Stages,” IEEE PESC Conference Record, pp. 18-34 (1976).
[68] V. Vorpérian, “Simplified Analysis of PWM Converters Using Model of PWM Switch. Continuous Conduction Mode,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 26, No. 3, pp. 490-496 (1990).
[69] M. J. Ryan, W. E. Brumsickle and R. D. Lorenz, “Control Topology Options for Single-Phase UPS Inverters,” IEEE Transactions on Industry Applications, Vol. 33, No. 2, pp. 493-501 (1997).
[70] N. M. Abdel-Rahim and J. E. Quaicoe, “A Single-Phase Voltage-Source Utility Interface System for Weak AC Network Applications,” IEEE APEC Conference Record, pp. 93-99 (1994).
[71] T. J. Moir, “Analysis of an Amplitude-Locked Loop,” IEE Electronics Letters, Vol. 31, No. 9, pp. 694-695 (1995).
[72] K. Harada and G. Zhao, “Controlled Power Interface Between Solar Cells and AC Source,” IEEE Transactions on Power Electronics, Vol. 8, No. 4, pp. 654-662 (1993).
[73] C. Hua, J. Lin and C. Shen, “Implementation of a DSP-Controlled Photovoltaic System with Peak Power Tracking,” IEEE Transactions on Industrial Electronics, Vol. 45, No. 1, pp. 99-107 (1998).
[74] M. H. Nehrir, B. J. LaMeres, G. Venkataramanan, V. Gerez and L. Alvarado, “An Approach to Evaluate the General Performance of Stand-Alone Wind/Photovoltaic Generating Systems,” IEEE Transactions on Energy Conversion, Vol. 15, No. 4, pp. 433-439 (2000).
[75] F. Valenciaga, P. F. Puleston and P. E. Battaiotto, “Power Control of a Solar/Wind Generation System Without Wind Measurement: A Passivity/Sliding Mode Approach,” IEEE Transactions on Energy Conversion, Vol. 18, No. 4, pp. 501-507 (2003).
[76] S. Saha and V. P. Sundarsingh, “Novel Grid-connected Photovoltaic Inverter,” IEE Proceedings-Generation, Transmission and distribution, Vol. 143, No. 2, pp. 219-224 (1996).
[77] G. F. Franklin, J. D. Powell and M. L. Workman, Digital Control of Dynamic Systems, Addison-Wesley (1989).
[78] M. A. Jabbar, J. C. Hoque and Z. H. Rahman, “Sensorless Permanent Magnet Synchronous Motor Drives,” IEEE CCECE Conference Record, pp. 878-883 (1997).
[79] K. S. Low, Y. Z. Deng and X. L. Guo, “Two-Degree-of-Freedom Control of a PMSM Drive without Mechanical Sensor,” IEEE IECON Conference Record, pp. 498-502 (1998).
[80] Simulink User’s Guide Version 3, The MathWorks Inc., (1999).
[81] CSB Co., Technical Manual, pp. 6-20 (2005).
[82] 康宗仁,永磁同步發電機之風力發電功率控制系統之研製,國立台灣科技大學電機研究所碩士論文,民國九十四年。

QR CODE