簡易檢索 / 詳目顯示

研究生: 楊昇翔
Xiang-Shan Yang
論文名稱: 熱處理對低合金鎳鉻鉬鑄鋼低溫衝擊韌性之影響
The Effect of Heat Treatment on Low Temperature Impact Toughness of Low Alloy Ni-Cr-Mo Cast Steel
指導教授: 雷添壽
Tien-Shou Lei
口試委員: 鄭偉鈞
Wei-Chun Cheng
林本源
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 64
中文關鍵詞: 鎳鉻鉬鑄鋼低溫衝擊韌性
外文關鍵詞: Ni-Cr-Mo Cast Steel, Low Temperature Impact Toughness
相關次數: 點閱:234下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究是利用退火時間及回火溫度等熱處理條件的改變,探討低合金鎳鉻鉬鑄鋼之低溫衝擊韌性與金相顯微組織的關係。熱處理分為兩種:一種是在920 ℃下退火,分別保持1、3、7及12 hr後,再進行淬、回火熱處理;一種是先進行退火、淬火熱處理,最後再施以400、500、590、620及650 ℃的回火熱處理。熱處理後試片在-40 ℃作低溫衝擊,並以SEM觀察金相與破斷面。
實驗結果顯示:(1)退火及回火的調質熱處理可以明顯提升低合金鎳鉻鉬鑄鋼在-40 ℃的低溫衝擊韌性,但對硬度的影響不大;(2)以-40 ℃的衝擊值為評估依據,最佳的調質熱處理條件為,退火是920 ℃持溫7小時後爐冷,淬冷是940 ℃持溫1小時後以60 ℃油淬冷,回火是在620 ℃持溫1小時後空冷,其衝擊值超過37 J;(3)低溫衝擊韌性的提高,可能與回火熱處理後所產生的下變韌鐵與回火麻田鐵組織有密確關係。


In this study, the heat treating factors of annealing time and tempering temperature were considered to investigate the relationship between low temperature impact toughness and microstructures of low alloy Ni-Cr-Mo steel. Experiments were conducted in two categories: one of them was annealed at 920 ℃, for 1, 3, 7, and 12 hr respectively, followed with a quenching and tempering; the other set of experiments was to conduct tempering in various temperatures as 400, 500, 590, 620 and 650 ℃. Specimens after various heat treatments were impact tested at -40 ℃. The microstructures of heat treated specimens and fracture surface of impact tested specimens were examined with SEM.

The results showed: (1) the annealing together with the quenched and tempered process can significantly improve the -40 ℃temperature impact toughness of low alloy Ni-Cr-Mo steel, but has little effect on hardness; (2) based on the value of impact toughness at -40 ℃, the best condition for quenched and tempered is annealed at 920 ℃ for 7 hr after then furnace cooled, austenitized at 940 ℃ for 1 hr and oil quenched with oil temperature at 60 ℃, and tempered at 620 ℃ for 1 hour followed by air cooling. Followed with this process, the impact value -40 ℃can over 37 J; (3) the increasing of impact toughness at low temperature may be contributed from the presence of low bainite and tempered martensite which are resulted from the designed heat treatment.

目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖索引 VI 表索引 IX 第一章 前言 1 第二章 原理及文獻探討 2 2.1 鋼添加合金元素的效用 2 2.2 熱處理的功能 4 2.2.1 退火 4 2.2.2 淬火 4 2.2.3 回火 5 2.3 沃斯田鐵化溫度與時間的影響 6 2.4 鎳鉻鉬鋼的變韌鐵組織 7 2.5 破壞模式 8 2.5.1 延性破壞 8 2.5.2 脆性破壞 8 2.6 溫度對衝擊值的影響 9 第三章 實驗方法 23 3.1實驗流程與材料準備 23 3.2熱處理試驗 23 3.3機械性質試驗 24 3.4 顯微組織分析 25 第四章 結果與討論 34 4.1鑄態與熱處理的顯微組織及機械性質 34 4.2油淬及回火的顯微組織及機械性質 35 4.3低溫韌性 36 4.3.1退火溫度與時間的影響 36 4.3.2回火溫度與時間的影響 37 4.4機械性質的比較 39 第五章 結論 58 參考文獻 59 附錄 A 63 作者簡介 64

參考文獻
[1] N. Saeidi and A. Ekrami, “Comparison of Mechanical Properties of Martensite/Ferrite and Bainite/Ferrite Dual Phase 4340 Steel”, Material Science and Engineering A, 523, pp. 125-129 (2009).
[2] Y. Tomita and K. Okabayashi, “Improvement in Low Temperature Mechanical Properties of 0.40 Pct C-Ni-Cr-Mo Ultrahigh Strength Steel with the Second Phase Lower Bainite”, Metallurgical Transactions A, Vol. 14, No. 2, pp. 485-492 (1983).
[3] 黃振賢,金屬材料,文京圖書有限公司,台北,第240頁 (1990)。
[4] M. Li, J. A. Brooks, “Thermophysical Property Measurements on Low Alloy High Strength Carbon Steels”, Scripta Materialia, Vol. 36, No. 12, pp. 1353-1359 (1997).
[5] D. R. Askeland, The science and engineering of materials, 5 ed. Thomson, Toronto, p. 474 (2006).
[6] 張錫綸,鋼鐵材料選用手冊,科技圖書股份有限公司,台北, 第24-25頁 (1992)。
[7] 王仰舒,鋼鐵材料,徐氏基金會出版,台北,第83-93頁 (1980)。
[8] P. M. Unterweiser, H. E. Boyer and J. J.Kubbs, Heat Treater’s Guide, 2ed. ASM, OH, p. 1 (1995).
[9] E. Navara, B. Bengtsson and K. E. Easterling, “Austenite Formation in Manganese-Partitioning Dual-Phase Steel”, Material Science and Technology, vol. 2, No. 12, pp. 1196-1201 (1986).
[10] P. M. Unterweiser, H. E. Boyer and J. J.Kubbs, Heat Treater’s Guide, 2ed. ASM, OH, pp. 27-31 (1995).
[11] W. D. Callister, Material Science and Engineering an Introduction, 4 ed. John Wiley & Sons, Utah (1998).
[12] 黃振賢,金屬熱處理,新文京開發出版有限公司,台北, 第90-91頁 (2000)。
[13] V. B. John, Introduction to Engineering Materials, 3 ed. London, Macmillan, p. 238 (1992).
[14] 曾春風和郭央甚,「構造用鎳鉻鉬鋼JIS-SNCM 439熱處理之研究」,技術學刊,第二十五卷,第二期,第121-130頁 (2010)。
[15] L. Cheng, C. M. Brakman, B. M. Korevaar, and E. J.Mittemeijer, “The Tempering of Iron-carbon Martensite; Dilatometric and Calorimetric Analysis”, Metallurgical and Material Transactions A, Vol. 19, No. 10, pp. 2415-2426 (1988).
[16] Robert E. Reed-Hill, Physical Metallurgy Principles, 3 ed. PWS Publishing company, Boston (1991).
[17] G. Y.Lai, W. E. Wood, R. A. Clark, V. F. Zackay and E. R. Parker, “The Effect of Austenitizing Temperature on the Microstructure and Mechanical Properties of As-Quenched 4340 Steel”, Metallurgical and Material Transactions A, Vol. 5, pp. 1663-1670 (1974).
[18] C. N. Sastry and W. E. Wood, “On the Presence Austenite at the Prior Austenite Boundaries of AISI 4340 Steel”, Material Science and Engineering, Vol. 45, pp. 277-280 (1980).
[19] H. K.D. H. Bhadeshia and J. W. Christian, “Bainite in Steel”, Metallurgical and Material Transactions A, Vol. 21, No. 4, pp. 767-797 (1990).
[20] H. K.D. H. Bhadeshia and D. V. Edmonds, “The Bainite Transformation in a Silicon Steel”, Metallurgical and Material Transactions A, Vol. 10, No. 7, pp. 895-907 (1979).
[21] L. C. Chang, “Mechanism of Bainite Formation in Steel”, Chinese Jurnal of Material Science, Vol. 30, No. 3, pp. 151-164 (1998).
[22] G. Spanos, “The Fine Structure and Formation Mechanism of Lower Bainite”, Metallurgical and Material Transactions A, Vol. 25, No. 9, pp. 1967-1980 (1994).
[23] H. K. D. H. Bhadeshia, “Some Phase Transformation in Steels”, Material Science and Technology, vol. 5, No. 1, pp. 22-29 (1999).
[24] W. S. Lee and T. T. Su, “Mechanical Properties and Microstructural Features of AISI 4340 High-Strength Alloy Steel under Quench and Tempered Conditions”, Journal of Material Processing Technology, 87, pp. 198-206 (1999).
[25] 機械工程手冊編輯委員會,機械工程手冊 5 –材料測試與分析,五南圖書出版股份有限公司,台北,第182頁 (2002)。
[26] T. S. Shih and J. Y. Wang, “Variation of Inclusions in Cast Steel with Mold Types and Its Effect on Properties”, AFS Transactions, Vol. 98, pp. 105-113 (1990).
[27] D. R. Askeland, The science and engineering of materials, 5 ed. Thomson, Toronto, p. 231, p. 475 (2006).
[28] 機械工程手冊編輯委員會,機械工程手冊 5 -材料測試與分析,五南圖書出版股份有限公司,台北,第181頁 (2002)。
[29] K. P. Datta, “Sharp Crack and Blunt Notch Toughness Behavior of Quenched and Tempered AISI 4340 Steel”, Material Science and Engineering, Vol. 51, pp. 241-251 (1981).
[30] M. J Leap and J. C. Wingert, “The Effect of Grain-Refining Precipitates on the Development of Toughness in 4340 Steel”, Metallurgical and Material Transactions A, Vol. 30, No. 1, pp. 93-114 (1999).
[31] 曾莉雅,「SAE 8620 合金鋼機械性能之研究」,碩士論文,逢甲大學,台中 (2006)。
[32] H. Kwon and J. C. Cha, “The Effect of Grain Size on Fracture Behaviour in Tempered Martensite Embrittlement for AISI 4340 Steel”, Material Science and Engineering, Vol. 100, pp. 121-128 (1988).
[33] V. B. John, Introduction to Engineering Materials, 3 ed. London, Macmillan, pp. 139-141 (1992).
[34] Y. Tomita and K.Okabayashi, “Heat Treatment for Improvement in Lower Temperature Mechanical Properties of 0.40 Pct C-Cr-Mo Ultrahigh Strength Steel”, Metallurgical and Material Transactions A, Vol. 14, No. 11, pp. 2387-2393 (1983).
[35] 胡家榮、陳俊雄、馬堅勇、黃鼎貴和李丕耀,「改良型Ni-Cr Mo鋼之機械性能研究」,材料科學,第33卷,第2期,第82-88頁(2001)。
[36] Y. Tomita and K.Okabayashi, “Mechanical Properties of 0.40 Pct C-Ni-Cr-Mo High Strength Steel Having a Mixed Structure of Martensite and bainite”, Metallurgical and Material Transactions A, Vol. 16, No. 1, pp. 73-82 (1985).

QR CODE