簡易檢索 / 詳目顯示

研究生: 陳星兆
Sing-Jhao Chen
論文名稱: 基於Cockcroft-Walton倍壓電路具功率因數修正之柔性切換高升壓比交流-直流轉換器
A Soft-switching High Step-Up AC-DC Converter Based on Cockcroft-Walton Voltage Multiplier with PFC
指導教授: 楊宗銘
Chung-Ming Young
口試委員: 呂錦山
Ching-Shan Leu
林瑞禮
Ray-Lee Lin
鄭世仁
Shih-Jen Cheng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 71
中文關鍵詞: Cockcroft-Walton倍壓電路功率因數修正交流-直流轉換器柔性切換零電流切換(ZCS)
外文關鍵詞: Cockcroft-Walton voltage multiplier, power factor correction, ac-dc converter, soft-switching, zero current switching (ZCS)
相關次數: 點閱:315下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出基於Cockcroft-Walton (CW)倍壓電路之柔性切換單相高升壓比交流-直流轉換器,其電路架構由一個升壓電感器、一個雙向開關、一個輔助電路與一個CW倍壓電路所組成。相較於傳統CW倍壓電路,本文提出之轉換器利用功率因數修正技術,使得轉換器達到單位功率因數、低的失真電流與提供一可調的高輸出直流電壓。為了減少開關的切換損失與電磁干擾問題,本文於轉換器中加入一輔助電路,操作在固定切換頻率下,使主開關與輔助開關皆達到零電流切換,文中亦說明提出之轉換器操作原理、電路元件設計考量與控制策略。本文實作輸出功率500瓦特與輸出電壓1200伏特之系統電路,以主動式功率因數修正IC UC3854作為控制核心,最後模擬系統電路與量測實驗結果,驗證提出之轉換器的可行性。


This paper proposes a single-phase soft-switching high step-up ac-dc converter based on Cockcroft-Walton voltage multiplier (CWVM) with power factor correction (PFC), which is formed by one boost inductor, one bidirectional switch, one auxiliary circuit and a CWVM. By applying PFC technology, the proposed converter promises a nearly unity power factor and low distorted line current and provides adjustable high step-up dc voltage that conventional CWVM circuit cannot achieve. In order to reduce the switching losses and EMI, an auxiliary circuit for implementing soft-commutation is added to the power stage of the proposed converter. Operating at fixed switching frequency, in which both main and auxiliary switches are turned off with ZCT. The operation principle, design considerations and control strategy of the proposed converter all are detailed and investigated in this paper. A 1.2kV/500W laboratory prototype, which employs a commercial PFC IC UC3854 as controller, is built for test, measurement and evaluation. Finally, simulation and experimental results demonstrate the validity of the proposed converter.

摘要 I AbstractII 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究動機與背景 1 1.2 系統描述與研究方法 2 1.3 內容大綱 3 第二章 單相高升壓比交流-直流轉換器 5 2.1 傳統Cockcroft-Walton倍壓電路介紹 5 2.2 單相高升壓比交流-直流轉換器操作原理 6 2.3 電壓增益推導 16 2.4 電路元件設計考量 18 第三章 具柔性切換單相高升壓比交流-直流轉換器 20 3.1 柔性切換技術介紹 20 3.2 零電壓切換轉換器與零電流切換轉換器介紹 24 3.3 具柔性切換單相高升壓比交流-直流轉換器操作原理 29 3.4 電路元件設計考量 39 第四章 功率因數修正與柔性切換控制策略 41 4.1 功率因數修正電路介紹 41 4.2 功率因數修正器控制方法 43 4.2.1 連續導通模式 43 4.2.2 不連續導通模式 47 4.2.3 邊界導通模式 48 4.3 柔性切換策略 49 第五章 系統模擬與實作 51 5.1 硬體架構 52 5.2 電路模擬與實作 56 第六章 結論與未來研究方向 66 6.1 結論 66 6.2 未來研究方向 66 參考文獻 68

[1] M. D. Bellar, E. H. Watanabe, and A. C. Mesquita, “Analysis of the dynamic and steady-state performance of Cockcroft-Walton cascade rectifier,” IEEE Trans. Power Electron., vol. 7, no. 3, pp. 526-534, Jul. 1992.

[2] C. Iannello, S. Luo, and I. Batarseh, “Full bridge ZCS PWM converter for high-voltage high-power applications,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 2, pp. 515-526, Apr. 2002.

[3] J. C. Rosas-Caro, J. M. Ramirez, F. Z. Peng, and A. Valderrabano, “A DC-DC multilevel boost converter,” IET Power Electron., vol. 3, no. 1, pp. 129-137, Jan. 2010.

[4] H. J. Chung, “A CW CO2 laser using a high-voltage dc-dc converter with resonant inverter and Cockcroft-Walton multiplier,” Optics and Laser Technology, vol. 38, no. 8, pp. 577-584, Nov. 2006.

[5] K. S. Muhammad, A. M. Omar, and S. Mekhilef, “Digital control of high DC voltage converter based on Cockcroft Walton voltage multiplier circuit,” in Proc. IEEE TENCON, pp. 21-24, Nov. 2005.

[6] C. M. Young, M. H. Chen, S. H. Yeh, and K. H. Yuo, “A single-phase single-stage high step-up AC-DC matrix converter based on Cockcroft-Walton voltage multiplier with PFC,” IEEE Trans. Power Electron., vol. 27, no. 12, pp. 4894-4905, Dec. 2012.

[7] Draft-Revision of Publication IEC 555-2: Harmonics, Equipment for Connection to the Public Low Voltage Supply System, IEC SC 77A, 1990.

[8] Electromagnetic Compatibility (EMC)-Part 3: Limits-Section 2: Limits for Harmonic Current Emissions (Equipment Input Current <16 A Per Phase), IEC1000-3-2 Doc, 1995.

[9] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics, 3nd ed. New York: Wiley, pp. 172-178, 2003.

[10] M. M. Weiner, “Analysis of Cockcroft-Walton voltage multipliers with an arbitrary number of stages,” Rev. Sci. Instrum., vol. 40, no. 2, pp. 330-333, Feb. 1969.

[11] F. Belloni, P. Maranesi, and M. Riva, “Parameters optimization for improved dynamics of voltage multipliers for space,” in Proc. IEEE Power Electron. Spec. Conf., pp. 493-443, Jun. 2004.

[12] C. M. Young, M. H. Chen, and C. C. Ko, “High power factor transformerless single-stage single-phase ac to high-voltage dc converter with voltage multiplier,” IET Power Electron., vol. 5, no. 2, pp. 149-157, Feb. 2012.

[13] K. H. Liu and F. C. Y. Lee, “Zero-voltage switching technique in DC/DC converters,” IEEE Trans. Power Electron., vol. 5, no. 4, pp. 293-304, Jul. 1990.

[14] G. Hua, C. S. Leu, Y. Jiang, and F. C. Y. Lee, “Novel zero-voltage-transition PWM converters,” IEEE Trans. Power Electron., vol. 9, no. 2, pp. 213-219, Mar. 1994.

[15] R. Gurunathan and A. K. S. Bhat, “ZVT boost converter using a ZCS auxiliary circuit,” IEEE Trans. Aerosp. Electron. Syst., vol. 37, no. 3, pp. 889-897, Jul. 2001.

[16] N. Jain, P. K. Jain, and G. Joos, “A zero voltage transition boost converter employing a soft switching auxiliary circuit with reduced conduction losses,” IEEE Trans. Power Electron., vol. 19, no. 1, pp. 130-139, Jan. 2004.

[17] H. Bodur, S. Cetin, and G. Yanik, “A new zero-voltage transition pulse width modulated boost converter,” IET Power Electron., vol. 4, no. 7, pp. 827-834, Aug. 2011.

[18] K. H. Liu, R. Oruganti, and F. C. Y. Lee, “Quasi-resonant converters-topologies and characteristics,” IEEE Trans. Power Electron., vol. PE-2, no. 1, pp. 62-71, Jan. 1987.

[19] G. Hua, E. X. Yang, Y. Jiang, and F. C. Y. Lee, “Novel zero-current-transition PWM converters,” IEEE Trans. Power Electron., vol. 9, no. 6, pp. 601-606, Nov. 1994.

[20] D. Y. Lee, M. K. Lee, D. S. Hyun, and I. Choy, “New zero-current-transition PWM DC/DC converters without current stress,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 95-104, Jan. 2003.

[21] C. M. Wang, “A new single-phase ZCS-PWM boost rectifier with high power factor and low conduction losses,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 500-510, Apr. 2006.

[22] J. F. Chen, R. Y. Chen, and T. J. Liang, “Study and implementation of a single-stage current-fed boost PFC converter with ZCS for high voltage applications,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 379-386, Jan. 2008.

[23] A. Mousavi, P. Das, and G. Moschopoulos, “A comparative study of a new ZCS DC-DC full-bridge boost converter with a ZVS active-clamp converter,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1347-1358, Mar. 2012.

[24] M. Rezvanyvardom, E. Adib, and H. Farzanehfard, “New interleaved zero-current switching pulse-width modulation boost converter with one auxiliary switch,” IET Power Electron., vol. 4, no. 9, pp. 979-983, Nov 2011.

[25] R. Carbone and P. Corsonello, “A new passive power factor corrector for single-phase bridge diode rectifier,” in proc. IEEE PESC’03, pp. 701-706, Jun. 2003.

[26] J. Zhang, M. M. Jovanovic, and F. C. Lee, “Comparison between CCM single-stage and two-stage boost PFC converters,” in Proc. IEEE Applied Power Electron. Conf., pp. 335-341, Mar. 1999.

[27] L. Rossetto, G. Spiazzi, and P. Tenti, “Control techniques for power factor correction converters,” in Proc. PEMC’94, pp. 1310-1318, Sep. 1994.

[28] T. Grote, F. Schafmeister, H. Figge, N. Frohleke, P. Ide, and J. Bocker, “Adaptive digital slope compensation for peak current mode control,” in Proc. IEEE Energ. Convers. Congr. Expo., pp. 3523-3529, Sep. 2009.

[29] Z. Yang and P. C. Sen, “A novel technique to achieve unity power factor and fast transient response in AC-to-DC converters,” IEEE Trans. Power Electron., vol. 16, no. 6, pp. 764-775, Nov. 2001.

[30] A. Karaarslan, “Hysterisis control of power factor correction with a new approach of sampling technique,” in Proc. IEEE Convention of Electrical and Electronics Engineers in Israel, pp. 765-769, Dec. 2008.

[31] K. H. Liu and Y. L. Lin, “Current waveform distortion in power factor correction circuits employing discontinuous-mode boost converters,” in Proc. IEEE Power Electronics Specialists Conf.(PESC)., pp. 825-829, Jun. 1989.

[32] S. P. Yang, S. J. Chen, and C. M. Huang, “Small-signal modeling and controller design of BCM boost PFC converters,” in Proc. IEEE Industrial Electronics and Applications, pp. 1096-1101, Jul. 2012.

[33] Texas Instruments, “UC1854, UC2854, UC3854 high power factor preregulator,” Jun. 1998.

[34] P. C. Todd, “UC3854 controlled power factor correction circuit design,” U-134, Unitrode Application Note, pp. 3-269-3-288.

QR CODE