簡易檢索 / 詳目顯示

研究生: Nibret Gebeyehu Akalework
Nibret - Gebeyehu Akalework
論文名稱: INVESTIGATIONS on ULTRATHIN TiO2 COATED MWCNT and Mn DOPED TITANIA as UNIQUE Pt CATALYST SUPPORTS for FUEL CELL APPLICATIONS
INVESTIGATIONS on ULTRATHIN TiO2 COATED MWCNT and Mn DOPED TITANIA as UNIQUE Pt CATALYST SUPPORTS for FUEL CELL APPLICATIONS
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 蘇威年
Wei-Nien Su
周宏隆
Hung-Lung Chou
周澤川
none
楊明長
none
林智汶
none
杜景順
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 110
中文關鍵詞: ORR鐵道部SMSID-波段空缺納米材料宣傳效果
外文關鍵詞: d-band vacancies, SMSI, Keywords: ORR, promotional effect
相關次數: 點閱:242下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

可持續發展要求的可持續供應,清潔,廉價的能源,不會造成負面的社會影響。燃料電池技術是已知的,是一個有希望的解決方案在世界各地的能源問題。在燃料電池技術的主要目標是開發低成本,高性能和耐用的材料。然而,在碳載體上的鉑和呆滯的氧還原反應(ORR)動力學不穩定的影響聚合物電解質膜燃料電池(PEMFC)的活性和長期耐久性的關鍵問題。同樣,直接甲醇燃料電池(DMFC),其特徵在於由較慢的氧化動力學頑強舉行的類CO逐步甲醇脫氫過程中產生的反應中間體的甲醇,甲醇的交叉和鉑中毒。此外,高活性和高選擇性的催化劑,在很寬的溫度窗口操作(如80-180℃),良好的耐CO2和CO中毒的蒸汽,可承受的一些問題需要解決燃料電池催化。
為了使與其他現有技術的競爭力的燃料電池,燃料電池發電系統的成本,必須減少,必須提高其耐用性和可靠性。然而,惡劣的自然豐度,鉑電極的燃料電池的海岸。最近,探索的替代催化劑(非貴重金屬電極和金屬合金)和他們的支持領域的研究熱點。雙方的催化劑和它們的支撐工程是已知的潛在提高的海岸,燃料電池的電催化活性和耐久性。
因此,本文的重點是調查的超薄二氧化鈦包覆多壁碳納米管和Mn摻雜TiO2,Pt催化劑用於燃料電池的支持和CO氧化催化。我們的重點是探索替代的催化劑載體,提供各種優勢,其相對較高的表面積,電導率,穩定,合作的催化活性和由於Pt和支持的強相互作用,導致高度分散,錨鉑催化劑粒子。強烈的金屬支持互動揭示了一個高度活躍和穩定elctrocatalysts氧還原反應(ORR),甲醇氧化反應(MOR)和CO的催化氧化。
這項工作的第一部分是“超薄型二氧化鈦包覆多壁碳納米管具有良好的導電性和SMSI性質的Pt催化劑對氧還原反應在質子交換膜燃料電池的支持。它集中負載納米二氧化鈦上沉積超薄多壁碳納米管的合成及表徵鉑在質子交換膜燃料電池的氧的還原反應。在這裡,我們提出了一個簡單的策略塗層碳納米管均勻的超薄TiO2薄膜用於質子交換膜燃料電池的支持,通過使用一個簡單的改性溶膠 - 凝膠法,然後鉑 - 多壁碳納米管的合成@ UT-二氧化鈦電極的使用甲酸作為還原劑對鉑金的。我們的方法利用了強烈的金屬的支持,的相互作用(SMSIs)之間的多壁碳納米管@ UT-TiO2載體和鉑納米粒子,這將導致在D-波段空缺,鉑金,由於電子轉移的支持減少,從而提高了性能的負載型催化劑。我們的研究結果表明,鉑MWCNT @ UT-TiO2具有較好的催化活性和耐久性相比具有同等的Pt負載量的Pt-MWCNT和Pt-C。
第二部分的標題是:“的合成與表徵一個多功能Ti0.8Mn0.2O2納米材料為Pt催化劑的支持:鐵道部,ORR催化應用'。這項工作的目的是支持Pt催化劑的合成的Ti0.8Mn0.2O2納米材料和探討,以提高活動的宣傳效果,穩定性和CO在甲醇氧化反應的耐受性。在這項工作中,Mn摻雜水平為銳鈦礦相二氧化鈦結構優化的探索,特點和提出的這些有趣的納米複合材料的形成機理。甲醇在Pt負載Mn摻雜二氧化鈦(銳鈦型)納米材料與納米片和納米狀形態的道路氧化的影響。這表明,Pt負載在Mn摻雜TiO2載體的發現一個有前途的唯一CO容限電相比,適宜的甲醇氧化反應(MOR)。在CO剝離測量顯示,20重量%Pt/Ti0.8Mn0.2O2的抗CO電催化劑對甲醇氧化反應的多個吸收峰,表現出其獨特的性質。是歸因於高穩定性,活性和獨特Pt/Ti0.8Mn0.2O2的納米材料向鐵道部改進的電子和質子導電性,強烈的金屬載體的相互作用以及促銷的效果發揮的Ti0.8Mn0.2O2產生的“雙功能”為MOR機制。
這項工作的目的也是為了探索這種新的Ti0.8Mn0.2O2鉑納米材料作為一種高活性和持久的催化劑對氧還原反應。電化學能量轉換技術的最具挑戰性的問題,在其中是活性的催化劑的氧還原反應中,催化劑的劣化和碳 - 支持腐蝕不足。因此,燃料電池用催化劑的設計必須被引導不僅通過集中在金屬催化劑上的催化行為;它也應該是對合成的一個交互式和穩定的支撐。從金屬 - 載體強相互作用(SMSI)是電子,幾何和雙功能的影響催化劑的活性,選擇性和穩定性的催化劑的性能負責。在這裡,我們介紹了一個高度穩定和活躍的Pt/Ti0.8Mn0.2O2電催化劑對氧還原反應。的優點是歸因於改進的導電性的水合Ti0.8Mn0.2O2支持,相對更高的比表面積,孔隙度和強烈的金屬載體相互作用(SMSI)由多功能Ti0.8Mn0.2O2賦予。 SMSI是由於從Ti0.8Mn0.2O2支持到Pt的電子轉移引起的,即,在d帶結構的Pt粒子的移位導致Pt和中間物種之間的弱相互作用。成立於Pt/Ti0.8Mn0.2O2納米材料對氧還原反應的活躍程度顯著高於其相​​應的Pt/TiO2為2.8倍,更比目前國家的最先進的Pt / C催化劑的納米級催化劑50電極表面的μg/cm-2負荷。
的最後一部分題目是:“較低的溫度下CO氧化錳摻雜二氧化鈦(Ti0.8Mn0.2O2)催化劑Pt負載在一個非常低的重量百分比顯著改善。它著重於合成,表徵及CO氧化催化活性一個非常低的%(重量)的Pt上的錳摻雜TiO2(0.05重量%Pt/Ti0.8Mn0.2O2的)納米材料的支持。用於合成的混合介孔的納米片和nanoroad的材料的合成方法提供了一些顯著的優點。 0.05%(重量)Pt / Ti0.8Mn0.2O2的樣品表現出顯著較高的CO氧化活性比相應的0.05%(重量)的適宜。較高的活性為0.05%(重量)Pt/Ti0.8Mn0.2O2歸因播放宣傳效果的氧原子的遷移率。用該催化劑時,100%的CO轉化率在120 oC。然而,0.05%(重量)Pt/TiO2在180℃時顯示出100%的CO轉化率。 Ti0.8Mn0.2O2顯示促銷效果Ti0.8Mn0.2O2納米材料沉積在催化劑的高活性,高穩定的鉑。我們的方法也可以擴展到其他技術領域:綠色的水分解和鋰離子電池。
在這項研究中,超薄的二氧化鈦塗層的MWCNT和Mn摻雜技術分別提供了一個可行的方法,它可以擴展到其他類似的技術應用的其他納米材料塗層和摻雜。


Sustainable development requires a sustainable supply of clean and affordable energy resources that do not cause negative societal impacts. Fuel cell technology is known to be a promising solution for energy issues over the world. The main objective in fuel cell technologies is to develop low-cost, high-performance and durable materials. However, the instability of platinum on the carbon support and the sluggish kinetics of the oxygen reduction reaction (ORR) are critical issues affecting the activity and long-term durability of polymer electrolyte membrane fuel cells (PEMFCs). Similarly, direct methanol fuel cells (DMFCs) are characterized by the slower oxidation kinetics of methanol, methanol crossover and platinum poisoning by tenaciously held CO-like reaction intermediate produced during stepwise dehydrogenation of methanol. Furthermore, highly active and selective catalyst that operates well in a wide temperature window (e.g., 80-180 oC), good resistance to CO2 and steam that withstands CO poisoning are still issues needed to be addressed for fuel cell catalysis.
In order to make fuel cells competitive with other conventional technologies, the cost of fuel cell power systems must be reduced; their durability and reliability must be improved. However, the poor natural abundance of platinum electrocatalyst keeps the cost of fuel cells higher. Recently, exploring alternative catalysts (nonprecious metal electrocatalyst and metal alloys) and their supports are hot areas of research. Engineering of both the catalysts and their supports is known to potentially improve the activity and durability of the electrocatalysts for fuel cells catalysis.
Therefore, this dissertation is focused on investigations of ultrathin TiO2 coated MWCNT and Mn doped TiO2 as Pt catalyst supports for fuel cell and CO oxidation catalysis. Our focus is to explore alternative catalyst supports that provide various advantages in terms of its relative high surface area, conductivity, stability, co-catalytic activity and due to the strong interactions between Pt and the support, leading to highly dispersed and well-anchored Pt catalyst particles. The strong metal support interaction revealed a highly active and stable elctrocatalysts for ORR, methanol oxidation reaction (MOR) and CO oxidation catalysis.
The first part of this work is entitled ‘‘ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs.’’ It focuses on the syntheses and characterization of Pt deposited on ultrathin TiO2-coated MWCNTs for oxygen reduction reaction in PEMFCs. Here we present a simple strategy to coat MWCNTs uniformly with an ultrathin TiO2 film used for PEMFC support by using a simple modified sol–gel method and then Pt is deposited on a MWCNTs@UT-TiO2 support by using formic acid as a reductant. Our approach takes advantage of the strong metal support interactions (SMSIs) between the MWCNT@UT-TiO2 support and platinum nanoparticles, which results in a decrease of the d-band vacancy of platinum due to electron transfer from the support, thereby enhancing the performance of the supported catalyst. Our results revealed that Pt–MWCNT@UT-TiO2 has better catalytic activity and durability compared to Pt–MWCNT and Pt–C with equivalent Pt loadings.
The second part is entitled ‘‘synthesis and characterization of a multifunctional Ti0.8Mn0.2O2 nanomaterial support for Pt catalyst: MOR, ORR catalytic applications’’. This work is aimed at the synthesis of Ti0.8Mn0.2O2 nanomaterial for Pt catalyst support and explores the promotional effect for improved activity, stability and CO tolerance in methanol oxidation reaction. In this work, an optimized Mn doping level into anatase phase TiO2 structure has been explored, and characterized and the formation mechanism of these intriguing nanocomposite is proposed. Oxidation of methanol over Pt supported on Mn doped TiO2 (anatase) nanomaterials with nanosheet and nanorod like morphology was investigated. It is demonstrated that Pt supported on a Mn doped TiO2 support revealed a promising unique CO tolerance electrocatalysts for MOR compared to Pt/TiO2. In the CO stripping measurement, Pt/Ti0.8Mn0.2O2 nanomaterial displayed multiple absorption peaks exhibiting its unique nature for a CO tolerant electrocatalyst for methanol oxidation reaction. The high stability, activity and unique Pt/Ti0.8Mn0.2O2 nanomaterial towards MOR is ascribed to the improved electron conductivity, strong metal support interaction as well as to the promotional effect resulting from ‘bifunctional’ mechanism for MOR played by Ti0.8Mn0.2O2.
This work is also aimed to explore this novel Ti0.8Mn0.2O2 supporting Pt nanomaterial as a highly active and durable catalyst towards oxygen reduction reaction. Among the most challenging issues in technologies for electrochemical energy conversion are the insufficient activity of the catalysts for the oxygen reduction reaction, catalyst degradation and carbon-support corrosion. Design of fuel cell catalysts must, therefore, be guided not only by focusing on the catalytic behavior of the metal catalysts; it should also be on synthesis of an interactive and stable supports. The electronic, geometric and bifunctional effects originating from Strong Metal-Support Interactions (SMSI) are responsible for the catalyst’s activity, selectivity, and stability determining the performance of catalysts. Here we introduced a highly stable and active Pt/Ti0.8Mn0.2O2 electrocatalyst for oxygen reduction reaction. The advantages conferred by the multifunctional Ti0.8Mn0.2O2 is ascribed to the improved conductivity of the hydrated Ti0.8Mn0.2O2 support, relatively higher surface area, porosity and the strong metal support interactions (SMSI). The SMSI results in electron transfer from Ti0.8Mn0.2O2 support to Pt; that is, the shift in the d-band structure of the Pt NPs leads to weak interactions between Pt and the intermediate species. The level of activity for the oxygen reduction reaction established on Pt/Ti0.8Mn0.2O2 nanomaterial significantly exceeds its corresponding Pt/TiO2 and is 2.6-fold more active than the present state-of-the-art Pt/C nanoscale catalyst for a 50 μg/cm-2 loading on glassy carbon electrodes (GCE) surface.
The final part is entitled ‘‘significantly improved lower temperature CO oxidation over an extremely low loading of Pt supported on a manganese doped TiO2 (Ti0.8Mn0.2O2) catalyst.’’ It focuses on synthesis, characterization and CO oxidation catalytic activity over an extremely low loading of Pt supported on a Manganese doped TiO2 (Pt/Ti0.8Mn0.2O2) nanomaterial. The synthesis procedure offers some distinct advantages for the synthesis of mixed mesoporous nanosheet and nanorod material. Pt/ Ti0.8Mn0.2O2 sample exhibited significantly higher CO oxidation activity compared with the corresponding Pt/TiO2. The higher activity of Pt/Ti0.8Mn0.2O2 is ascribed to the mobility of oxygen atom playing a promotional effect. With this catalyst, 100 % CO conversion occurs at 120 oC. However, the Pt/TiO2 showed 100 % CO conversion at 180 oC. The Ti0.8Mn0.2O2 displays a promotional effect for a highly active and stable platinum catalyst deposited on Ti0.8Mn0.2O2 nanomaterial. Our approach can also be extended to other technological areas: green water splitting and lithium ion batteries.
In this study, the ultrathin TiO2 coating of MWCNT and Mn doping techniques respectively provides a feasible method for coating and doping of other nanomaterials which can be extended to other similar technological applications.

Abstract i Acknowledgement v List of Figures xi List of Tables xvii Nomenclature xviii Acronyms xix Chapter 1 General Introduction 1 1.1 Overview about fuel cells and their challenges 1 1.1.1 Proton exchange membrane fuel cells (PEMFCs) 6 1.1.2 Direct methanol fuel cell (DMFC) 9 1.1.3 Issues in fuel cells 12 1.1.3.1 Electrocatalyst and catalyst layer degradation 13 1.1.3.1.1 Platinum degradation 13 1.1.3.1.2 Carbon support degradation 15 1.1.3.1.3 Membrane degradation 16 1.1.3.1.4 Gas diffusion layer degradation 18 1.1.3.1.5 Bipolar plate degradation 20 1.1.3.2 Cost 21 1.1.3.3 Reliability 21 1.1.4 CO oxidation 23 1.1.5 Role of supports for activity and stability of fuel cell catalysts 24 1.1.5.1. Support effects on ORR catalysis 25 1.1.5.2. Support effects on MOR catalysis 26 1.1.5.3. Support effects on CO oxidation reaction catalysis 28 1.2 Aims and objectives of the thesis 29 1.3 Thesis outline 31 Chapter 2: Materials and Methods 33 2.1 Materials 33 2.2 Methods 33 Chapter 3: Ultrathin TiO2-coated MWCNTs with Excellent Conductivity and Strong Metal Support Interaction Nature as Pt Catalyst Support for Oxygen Reduction Reaction in PEMFCs 41 3.1 Introduction 41 3.2 Experimental section 43 3.3 Results and discussion 45 3.3.1 Raman measurement 46 3.3.2 Fourier transform infrared (FT-IR)spectroscopy 47 3.3.3 Thermogravimetric analysis (TGA) measurement 48 3.3.4 X-ray diffraction (XRD) measurements 49 3.3.5 Scanning electron microscopic measurements 51 3.3.6 Transmission electron microscopy (TEM) measurements 52 3.3.7 Computational studies 55 3.3.8 X-ray photoelectron spectroscopy (XPS) measurements 56 3.3.9 Electronic conductivity measurements 61 3.3.10 X-Ray absorption spectroscopic (XAS) measurements 61 3.3.11 Electrochemical measurements 65 3.4 Summary 68 Chapter 4: Synthesis and Characterization of a Multifunctional Ti0.8Mn0.2O2 Nanomaterial Support for Pt Catalyst: MOR and ORR Catalytic Applications 71 4.1 Introduction 71 4.2 Experimental section 76 4.2.1 Synthesis of Ti0.8Mn0.2O2 catalyst support nanomaterial 76 4.2.2 Synthesis of Ti0.8Mn0.2O2 supported Pt catalysts77 4.3 Results and discussion 77 4.3.1 X-ray diffraction (XRD) measurements 78 4.3.2 Fourier transform infrared spectroscopy (FT-IR) measurements 80 4.3.3 Scanning electron microscopic measurements 82 4.3.4 Transmission electron microscopy (TEM) measurements 83 4.3.5 The nitrogen sorption isotherms 85 4.3.6 Electronic conductivity 87 4.3.7 X-Ray absorption spectroscopic measurements 87 4.3.8 Electrochemical measurements (MOR and ORR) 91 Loading effect on the electrochemical activity of Pt/Ti0.8Mn0.2O2/C towards ORR 97 4.4 Summary 103 Chapter 5: Significantly Improved Lower Temperature CO Oxidation Over an Extremely Low Loading of Pt Supported on a Manganese Doped TiO2 (Ti0.8Mn0.2O2) Catalyst 105 5.1 Introduction 105 5.2 Experimental section 107 5.3 Results and discussion 111 5.4 Summary 121 Chapter 6 Conclusion 123 Chapter 7 Thesis Contribution for Fuel Cell Catalysis 127 Chapter 8 Future Perspectives 129 Curriculum Vitae 147 Postscript 149

1. http://news.thomasnet.com/IMT/2010/05/27/world-energy-consumption-projected-to-grow-49-percent-between-2007-2035/.
2. Cullen, J.M., J.M. Allwood, and E.H. Borgstein, Reducing Energy Demand: What Are the Practical Limits? Environmental Science & Technology, 2011. 45(4): p. 1711-1718.
3. Schmidt, M., The Sankey Diagram in Energy and Material Flow Management. Journal of Industrial Ecology, 2008. 12(1): p. 82-94.
4. Pacala, S. and R. Socolow, Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies. Science, 2004. 305(5686): p. 968-972.
5. Cullen, J.M. and J.M. Allwood, Theoretical efficiency limits for energy conversion devices. Energy, 2010. 35(5): p. 2059-2069.
6. Service, R.F., Bringing Fuel Cells Down to Earth. Science, 1999. 285(5428): p. 682-685.
7. Shin, T.H., S. Ida, and T. Ishihara, Doped CeO2–LaFeO3 Composite Oxide as an Active Anode for Direct Hydrocarbon-Type Solid Oxide Fuel Cells. Journal of the American Chemical Society, 2011. 133(48): p. 19399-19407.
8. Costamagna, P. and S. Srinivasan, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects. Journal of Power Sources, 2001. 102(1-2): p. 242-252.
9. Barbir, F. and T. Gomez, Efficiency and economics of proton exchange membrane (PEM) fuels cells. International Journal of Hydrogen Energy, 1996. 21(10): p. 891-901.
10. Chalk, S.G., J.F. Miller, and F.W. Wagner, Challenges for fuel cells in transport applications. Journal of Power Sources, 2000. 86(1): p. 40-51.
11. Costamagna, P. and S. Srinivasan, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects. Journal of Power Sources, 2001. 102(1-2): p. 253-269.
12. Cacciola, G., V. Antonucci, and S. Freni, Technology up date and new strategies on fuel cells. Journal of Power Sources, 2001. 100(1-2): p. 67-79.
13. Ghenciu, A.F., Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Current Opinion in Solid State and Materials Science, 2002. 6(5): p. 389-399.
14. Gamburzev, S. and A.J. Appleby, Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC). Journal of Power Sources, 2002. 107(1): p. 5-12.
15. Mehta, V. and J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources, 2003. 114(1): p. 32-53.
16. Wang, Y.-J., D.P. Wilkinson, and J. Zhang, Noncarbon Support Materials for Polymer Electrolyte Membrane Fuel Cell Electrocatalysts. Chemical Reviews, 2011. 111(12): p. 7625-7651.
17. Gewirth, A.A. and M.S. Thorum, Electroreduction of Dioxygen for Fuel-Cell Applications: Materials and Challenges. Inorganic Chemistry, 2010. 49(8): p. 3557-3566.
18. Antolini, E., T. Lopes, and E.R. Gonzalez, An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells. Journal of Alloys and Compounds, 2008. 461(1–2): p. 253-262.
19. de Bruijn, F., The current status of fuel cell technology for mobile and stationary applications. Green Chemistry, 2005. 7(3): p. 132-150.
20. Stambouli, A.B. and E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable and Sustainable Energy Reviews, 2002. 6(5): p. 433-455.
21. Boudghene Stambouli, A. and E. Traversa, Fuel cells, an alternative to standard sources of energy. Renewable and Sustainable Energy Reviews, 2002. 6(3): p. 295-304.
22. Haile, S.M., Fuel cell materials and components. Acta Materialia, 2003. 51(19): p. 5981-6000.
23. Carrette, L., K.A. Friedrich, and U. Stimming, Fuel Cells: Principles, Types, Fuels, and Applications. ChemPhysChem, 2000. 1(4): p. 162-193.
24. Xu, J. and T.S. Zhao, Mesoporous carbon with uniquely combined electrochemical and mass transport characteristics for polymer electrolyte membrane fuel cells. RSC Advances, 2012.
25. Gasteiger, H.A., et al., Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental, 2005. 56(1–2): p. 9-35.
26. Lamy, C., J.-M. Leger, and S. Srinivasan, Direct Methanol Fuel Cells: From a Twentieth Century Electrochemist’s Dream to a Twenty-first Century Emerging Technology, in Modern Aspects of Electrochemistry, J.O.M. Bockris, B.E. Conway, and R. White, Editors. 2002, Springer US. p. 53-118.
27. Wang, B., Recent development of non-platinum catalysts for oxygen reduction reaction. Journal of Power Sources, 2005. 152(0): p. 1-15.
28. Viswanathan, V., et al., Unifying the 2e– and 4e– Reduction of Oxygen on Metal Surfaces. The Journal of Physical Chemistry Letters, 2012. 3(20): p. 2948-2951.
29. Kakac, S., Pramuanjaroenkij, A.; Vasiliev, L., Mini-Micro Fuel Cells: Fundamentals and Applications. NATO Science for Peace and Security Series C: Environmental Security, ed. Dordrecht. Vol. XVIII, . 2008, The Netherlands: Springer: Dordrecht.
30. Che, G., et al., Metal-Nanocluster-Filled Carbon Nanotubes:  Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production. Langmuir, 1999. 15(3): p. 750-758.
31. Hyeon, T., et al., High-Performance Direct Methanol Fuel Cell Electrodes using Solid-Phase-Synthesized Carbon Nanocoils. Angewandte Chemie International Edition, 2003. 42(36): p. 4352-4356.
32. Liao, S., et al., High Performance PtRuIr Catalysts Supported on Carbon Nanotubes for the Anodic Oxidation of Methanol. Journal of the American Chemical Society, 2006. 128(11): p. 3504-3505.
33. Gu, Y.-J. and W.-T. Wong, Nanostructure PtRu/MWNTs as Anode Catalysts Prepared in a Vacuum for Direct Methanol Oxidation. Langmuir, 2006. 22(26): p. 11447-11452.
34. Hamnett, A., Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis Today, 1997. 38(4): p. 445-457.
35. Williams, K.R. and G.T. Burstein, Low temperature fuel cells: Interactions between catalysts and engineering design. Catalysis Today, 1997. 38(4): p. 401-410.
36. Burstein, G.T., et al., Aspects of the anodic oxidation of methanol. Catalysis Today, 1997. 38(4): p. 425-437.
37. Wang, L., Y. Nemoto, and Y. Yamauchi, Direct Synthesis of Spatially-Controlled Pt-on-Pd Bimetallic Nanodendrites with Superior Electrocatalytic Activity. Journal of the American Chemical Society, 2011. 133(25): p. 9674-9677.
38. Kloke, A., et al., Strategies for the Fabrication of Porous Platinum Electrodes. Advanced Materials, 2011. 23(43): p. 4976-5008.
39. Wang, C., et al., Rational Synthesis of Heterostructured Nanoparticles with Morphology Control. Journal of the American Chemical Society, 2010. 132(18): p. 6524-6529.
40. Sun, S., et al., A Highly Durable Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells: Multiarmed Starlike Nanowire Single Crystal. Angewandte Chemie International Edition, 2011. 50(2): p. 422-426.
41. Lim, B., T. Yu, and Y. Xia, Shaping a Bright Future for Platinum-Based Alloy Electrocatalysts. Angewandte Chemie International Edition, 2010. 49(51): p. 9819-9820.
42. Zhou, Z.-Y., et al., High-Index Faceted Platinum Nanocrystals Supported on Carbon Black as Highly Efficient Catalysts for Ethanol Electrooxidation. Angewandte Chemie International Edition, 2010. 49(2): p. 411-414.
43. Wu, J., et al., Truncated Octahedral Pt3Ni Oxygen Reduction Reaction Electrocatalysts. Journal of the American Chemical Society, 2010. 132(14): p. 4984-4985.
44. Gao, M.-R., et al., A Methanol-Tolerant Pt/CoSe2 Nanobelt Cathode Catalyst for Direct Methanol Fuel Cells. Angewandte Chemie International Edition, 2011. 50(21): p. 4905-4908.
45. Kakac, S., Pramuanjaroenkij, A.; Vasiliev, L., Mini-Micro Fuel Cells: Fundamentals and Springer, ed. Springer2008, The Netherlands: Dordrecht.
46. Ma, J., N.A. Choudhury, and Y. Sahai, A comprehensive review of direct borohydride fuel cells. Renewable and Sustainable Energy Reviews, 2010. 14(1): p. 183-199.
47. Dillon, R., et al., International activities in DMFC R&D: status of technologies and potential applications. Journal of Power Sources, 2004. 127(1–2): p. 112-126.
48. Greeley, J. and M. Mavrikakis, A First-Principles Study of Methanol Decomposition on Pt(111). Journal of the American Chemical Society, 2002. 124(24): p. 7193-7201.
49. Zhou, C., et al., MnO2/CNT Supported Pt and PtRu Nanocatalysts for Direct Methanol Fuel Cells. Langmuir, 2009. 25(13): p. 7711-7717.
50. Rolison, D.R., et al., Role of Hydrous Ruthenium Oxide in Pt−Ru Direct Methanol Fuel Cell Anode Electrocatalysts:  The Importance of Mixed Electron/Proton Conductivity. Langmuir, 1999. 15(3): p. 774-779.
51. Kua, J. and W.A. Goddard, Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru):  Application to Direct Methanol Fuel Cells. Journal of the American Chemical Society, 1999. 121(47): p. 10928-10941.
52. Rousseau, S.v., et al., Investigation of Methanol Oxidation over Au/Catalysts Using Operando IR Spectroscopy: Determination of the Active Sites, Intermediate/Spectator Species, and Reaction Mechanism. Journal of the American Chemical Society, 2010. 132(31): p. 10832-10841.
53. Chen, Y.X., et al., Formate, an Active Intermediate for Direct Oxidation of Methanol on Pt Electrode. Journal of the American Chemical Society, 2003. 125(13): p. 3680-3681.
54. Lin, W.F., J.T. Wang, and R.F. Savinell, On‐Line FTIR Spectroscopic Investigations of Methanol Oxidation in a Direct Methanol Fuel Cell. Journal of The Electrochemical Society, 1997. 144(6): p. 1917-1922.
55. Arico, A.S., S. Srinivasan, and V. Antonucci, DMFCs: From Fundamental Aspects to Technology Development. Fuel Cells, 2001. 1(2): p. 133-161.
56. Thomas, S.C., et al., Direct methanol fuel cells: progress in cell performance and cathode research. Electrochimica Acta, 2002. 47(22–23): p. 3741-3748.
57. Petrii, O., Pt–Ru electrocatalysts for fuel cells: a representative review. Journal of Solid State Electrochemistry, 2008. 12(5): p. 609-642.
58. Lu, C., et al., UHV, Electrochemical NMR, and Electrochemical Studies of Platinum/Ruthenium Fuel Cell Catalysts. The Journal of Physical Chemistry B, 2002. 106(37): p. 9581-9589.
59. Jeon, M.K., K.R. Lee, and S.I. Woo, Enhancement in Electro-Oxidation of Methanol over PtRu Black Catalyst through Strong Interaction with Iron Oxide Nanocluster†. Langmuir, 2010. 26(21): p. 16529-16533.
60. Gotz, M. and H. Wendt, Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas. Electrochimica Acta, 1998. 43(24): p. 3637-3644.
61. Guo, S., et al., Synthesis of Ultrathin FePtPd Nanowires and Their Use as Catalysts for Methanol Oxidation Reaction. Journal of the American Chemical Society, 2011. 133(39): p. 15354-15357.
62. Tong, et al., An NMR Investigation of CO Tolerance in a Pt/Ru Fuel Cell Catalyst. Journal of the American Chemical Society, 2001. 124(3): p. 468-473.
63. Thanh Ho, V.T., et al., Robust non-carbon Ti0.7Ru0.3O2 support with co-catalytic functionality for Pt: enhances catalytic activity and durability for fuel cells. Energy & Environmental Science, 2011. 4(10): p. 4194-4200.
64. Fuel Cell Chemistry and Operation. ACS Symposium Series. Vol. 1040. 2010: American Chemical Society. 0.
65. Knights, S.D., et al., Aging mechanisms and lifetime of PEFC and DMFC. Journal of Power Sources, 2004. 127(1–2): p. 127-134.
66. Wu, J., et al., A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. Journal of Power Sources, 2008. 184(1): p. 104-119.
67. Virkar, A.V. and Y. Zhou, Mechanism of Catalyst Degradation in Proton Exchange Membrane Fuel Cells. Journal of The Electrochemical Society, 2007. 154(6): p. B540-B547.
68. Meier, J.C., et al., Degradation Mechanisms of Pt/C Fuel Cell Catalysts under Simulated Start–Stop Conditions. ACS Catalysis, 2012. 2(5): p. 832-843.
69. Huang, S.-Y., et al., Development of a Titanium Dioxide-Supported Platinum Catalyst with Ultrahigh Stability for Polymer Electrolyte Membrane Fuel Cell Applications. Journal of the American Chemical Society, 2009. 131(39): p. 13898-13899.
70. Roen, L.M., C.H. Paik, and T.D. Jarvi, Electrocatalytic Corrosion of Carbon Support in PEMFC Cathodes. Electrochemical and Solid-State Letters, 2004. 7(1): p. A19-A22.
71. Ioroi, T., et al., Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochemistry Communications, 2005. 7(2): p. 183-188.
72. Lee, K.-S., et al., Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells. Journal of Catalysis, 2008. 258(1): p. 143-152.
73. Debe, M.K., et al., High voltage stability of nanostructured thin film catalysts for PEM fuel cells. Journal of Power Sources, 2006. 161(2): p. 1002-1011.
74. Kong, D.-S. and J.-X. Wu, An Electrochemical Study on the Anodic Oxygen Evolution on Oxide Film Covered Titanium. Journal of The Electrochemical Society, 2008. 155(1): p. C32-C40.
75. Chen, G., S.R. Bare, and T.E. Mallouk, Development of Supported Bifunctional Electrocatalysts for Unitized Regenerative Fuel Cells. Journal of The Electrochemical Society, 2002. 149(8): p. A1092-A1099.
76. Dunwoody, D. and J. Leddy, Proton exchange membranes: The view forward and back. Electrochemical Society Interface, 2005. 14(3): p. 37-39.
77. Jayashree, R.S., et al., Air-Breathing Laminar Flow-Based Direct Methanol Fuel Cell with Alkaline Electrolyte. Electrochemical and Solid-State Letters, 2006. 9(5): p. A252-A256.
78. Mota, N.D., et al., Membraneless, Room-Temperature, Direct Borohydride/Cerium Fuel Cell with Power Density of Over 0.25 W/cm2. Journal of the American Chemical Society, 2012. 134(14): p. 6076-6079.
79. Healy, J., et al., Aspects of the Chemical Degradation of PFSA Ionomers used in PEM Fuel Cells. Fuel Cells, 2005. 5(2): p. 302-308.
80. Young, A.P., et al., Ionomer Degradation in Polymer Electrolyte Membrane Fuel Cells. Journal of The Electrochemical Society, 2010. 157(3): p. B425-B436.
81. Owejan, J.E., P.T. Yu, and R. Makharia, Mitigation of Carbon Corrosion in Microporous Layers in PEM Fuel Cells. ECS Transactions, 2007. 11(1): p. 1049-1057.
82. Kangasniemi, K.H., D.A. Condit, and T.D. Jarvi, Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions. Journal of The Electrochemical Society, 2004. 151(4): p. E125-E132.
83. Schulze, M., et al., Combined electrochemical and surface analysis investigation of degradation processes in polymer electrolyte membrane fuel cells. Electrochimica Acta, 2007. 52(6): p. 2328-2336.
84. Brett, D.J.L. and N.P. Brandon, Review of materials and characterization methods for polymer electrolyte fuel cell flow-field plates. Journal of Fuel Cell Science and Technology, 2007. 4(1): p. 29-44.
85. http://hydrogen.energy.gov/pdfs/8019_fuel_cell_system_cost.pdf.
86. Kathi Epping, M., P.K. John, and W.M. Kevin, Status of Fuel Cells and the Challenges Facing Fuel Cell Technology Today, in Fuel Cell Chemistry and Operation2010, American Chemical Society. p. 1-13.
87. Wind, J., et al., Fuel Cell Technology and Applications, 2003: p. 294-307.
88. Molburg, J.C., Doctor, R. D. . 20th Annual International Pittsburgh Coal Conference. in Pittsburgh. 2003. Pittsburgh, PA.
89. Casado-Rivera, E., et al., Electrocatalytic Activity of Ordered Intermetallic Phases for Fuel Cell Applications. Journal of the American Chemical Society, 2004. 126(12): p. 4043-4049.
90. Ho, V.T.T., et al., Nanostructured Ti0.7Mo0.3O2 Support Enhances Electron Transfer to Pt: High-Performance Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2011. 133(30): p. 11716-11724.
91. Okumura, M., et al., Chemical vapor deposition of gold on Al 2O 3, SiO 2, and TiO 2 for the oxidation of CO and of H 2. Catalysis Letters, 1998. 51(3-4): p. 53-58.
92. Kita, H., H. Nakajima, and K. Hayashi, Electrochemical oxidation of CO on Au in alkaline solution. Journal of Electroanalytical Chemistry, 1985. 190(1-2): p. 141-156.
93. Burke, L.D., D.T. Buckley, and J.A. Morrissey, Novel view of the electrochemistry of gold. The Analyst, 1994. 119(5): p. 841-845.
94. Burke, L.D. and P.F. Nugent, The electrochemistry of gold: I. The redox behaviour of the metal in aqueous media. Gold Bulletin, 1997. 30(2): p. 43-53.
95. Haruta, M., Nanoparticulate gold catalysts for low-temperature CO oxidation. Journal of New Materials for Electrochemical Systems, 2004. 7(3 SPEC. ISS.): p. 163-172.
96. Engel, T. and G. Ertl, Elementary Steps in the Catalytic Oxidation of Carbon Monoxide on Platinum Metals, 1979. p. 1-78.
97. McClure, S.M. and D.W. Goodman, New insights into catalytic CO oxidation on Pt-group metals at elevated pressures. Chemical Physics Letters, 2009. 469(1–3): p. 1-13.
98. Judai, K., et al., Low-Temperature Cluster Catalysis. Journal of the American Chemical Society, 2004. 126(9): p. 2732-2737.
99. Lei, Y., et al., Increased Silver Activity for Direct Propylene Epoxidation via Subnanometer Size Effects. Science, 2010. 328(5975): p. 224-228.
100. Tomita, A., et al., Pt/Fe-containing alumina catalysts prepared and treated with water under moderate conditions exhibit low-temperature CO oxidation activity. Catalysis Communications, 2012. 17(0): p. 194-199.
101. Park, K.-W. and K.-S. Seol, Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells. Electrochemistry Communications, 2007. 9(9): p. 2256-2260.
102. Shao, Y., et al., The corrosion of PEM fuel cell catalyst supports and its implications for developing durable catalysts. Electrochimica Acta, 2009. 54(11): p. 3109-3114.
103. Subban, C., et al., Catalyst supports for polymer electrolyte fuel cells. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010. 368(1923): p. 3243-3253.
104. Antolini, E., Composite materials: An emerging class of fuel cell catalyst supports. Applied Catalysis B: Environmental, 2010. 100(3–4): p. 413-426.
105. Tauster, S.J., S.C. Fung, and R.L. Garten, Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. Journal of the American Chemical Society, 1978. 100(1): p. 170-175.
106. Moghaddam, R.B. and P.G. Pickup, Support effects on the oxidation of methanol at platinum nanoparticles. Electrochemistry Communications, 2011. 13(7): p. 704-706.
107. Liu, X., et al., Strong Metal–Support Interactions between Gold Nanoparticles and ZnO Nanorods in CO Oxidation. Journal of the American Chemical Society, 2012. 134(24): p. 10251-10258.
108. Li, Y., et al., Strong metal-support interaction and catalytic properties of anatase and rutile supported palladium catalyst Pd/TiO2. Chemical Physics Letters, 2003. 372(1–2): p. 160-165.
109. Lai, F.-J., et al., Architecture of Bimetallic PtxCo1−x Electrocatalysts for Oxygen Reduction Reaction As Investigated by X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C, 2009. 113(29): p. 12674-12681.
110. Marković, N.M., et al., Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review. Fuel Cells, 2001. 1(2): p. 105-116.
111. Hwang, B.J., et al., An Investigation of Structure−Catalytic Activity Relationship for Pt−Co/C Bimetallic Nanoparticles toward the Oxygen Reduction Reaction. The Journal of Physical Chemistry C, 2007. 111(42): p. 15267-15276.
112. Coq, B. and F. Figueras, Bimetallic palladium catalysts: influence of the co-metal on the catalyst performance. Journal of Molecular Catalysis A: Chemical, 2001. 173(1–2): p. 117-134.
113. Lin, Y.-C., et al., Combined Experimental and Theoretical Investigation of Nanosized Effects of Pt Catalyst on Their Underlying Methanol Electro-Oxidation Activity. The Journal of Physical Chemistry C, 2009. 113(21): p. 9197-9205.
114. Sugawara, S., et al., Simultaneous Electrochemical Measurement of Oxygen Reduction and Pt Oxide Formation/Reduction on Pt Nanoparticle Surface. Electrocatalysis, 2011. 2(1): p. 60-68.
115. Rigsby, M.A., et al., Experiment and Theory of Fuel Cell Catalysis: Methanol and Formic Acid Decomposition on Nanoparticle Pt/Ru. The Journal of Physical Chemistry C, 2008. 112(39): p. 15595-15601.
116. Okanishi, T., et al., Chemical interaction between Pt and SnO 2 and influence on adsorptive properties of carbon monoxide. Applied Catalysis A: General, 2006. 298(1-2): p. 181-187.
117. Liu, Z., et al., Microwave heated polyol synthesis of carbon-supported PtSn nanoparticles for methanol electrooxidation. Electrochemistry Communications, 2006. 8(1): p. 83-90.
118. Chen, C.-S. and F.-M. Pan, Electrocatalytic activity of Pt nanoparticles deposited on porous TiO2 supports toward methanol oxidation. Applied Catalysis B: Environmental, 2009. 91(3–4): p. 663-669.
119. Jin, M., et al., Low temperature CO oxidation over Pd catalysts supported on highly ordered mesoporous metal oxides. Catalysis Today, 2012. 185(1): p. 183-190.
120. Akalework, N.G., et al., Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs. Journal of Materials Chemistry, 2012. 22(39): p. 20977-20985.
121. Henry, C.R., Surface studies of supported model catalysts. Surface Science Reports, 1998. 31(7–8): p. 231-325.
122. Campbell, C.T., Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties. Surface Science Reports, 1997. 27(1–3): p. 1-111.
123. Cho, A., Connecting the Dots to Custom Catalysts. Science, 2003. 299(5613): p. 1684-1685.
124. Valden, M., X. Lai, and D.W. Goodman, Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science, 1998. 281(5383): p. 1647-1650.
125. Kim, T.S., et al., Cryogenic CO Oxidation on TiO2-Supported Gold Nanoclusters Precovered with Atomic Oxygen. Journal of the American Chemical Society, 2003. 125(8): p. 2018-2019.
126. Huang, Z., et al., Catalytically Active Single-Atom Sites Fabricated from Silver Particles. Angewandte Chemie International Edition, 2012. 51(17): p. 4198-4203.
127. Qiao, B., et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem, 2011. 3(8): p. 634-641.
128. Bonanni, S., et al., Overcoming the Strong Metal−Support Interaction State: CO Oxidation on TiO2(110)-Supported Pt Nanoclusters. ACS Catalysis, 2011. 1(4): p. 385-389.
129. Hwang, B.J., et al., Size and Alloying Extent Dependent Physiochemical Properties of Pt−Ag/C Nanoparticles Synthesized by the Ethylene Glycol Method. The Journal of Physical Chemistry C, 2008. 112(7): p. 2370-2377.
130. Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999. 59(3): p. 1758-1775.
131. Kresse, G. and J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996. 6(1): p. 15-50.
132. Kresse, G. and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996. 54(16): p. 11169-11186.
133. Kresse, G. and J. Hafner, Ab initio molecular dynamics for liquid metals. Physical Review B, 1993. 47(1): p. 558-561.
134. Zhang, J., et al., Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters. Science, 2007. 315(5809): p. 220-222.
135. Bing, Y., et al., Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chemical Society Reviews, 2010. 39(6): p. 2184-2202.
136. Costamagna, P. and S. Srinivasan, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects. Journal of Power Sources, 2001. 102(1–2): p. 242-252.
137. Costamagna, P. and S. Srinivasan, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects. Journal of Power Sources, 2001. 102(1–2): p. 253-269.
138. Chen, S., et al., Origin of Oxygen Reduction Reaction Activity on “Pt3Co” Nanoparticles: Atomically Resolved Chemical Compositions and Structures. The Journal of Physical Chemistry C, 2008. 113(3): p. 1109-1125.
139. Stamenkovic, V.R., et al., Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science, 2007. 315(5811): p. 493-497.
140. Lee, K., et al., Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis. Journal of Applied Electrochemistry, 2006. 36(5): p. 507-522.
141. Adzic, R.R., et al., Platinum Monolayer Fuel Cell Electrocatalysts. Topics in Catalysis, 2007. 46(3-4): p. 249-262.
142. Lim, D.-H., et al., Electrochemical Characterization and Durability of Sputtered Pt Catalysts on TiO2 Nanotube Arrays as a Cathode Material for PEFCs. Journal of The Electrochemical Society, 2010. 157(6): p. B862-B867.
143. Stair, P.C., Metal-oxide interfaces: Where the action is. Nature Chemistry, 2011. 3(5): p. 345-346.
144. Selvaganesh, S.V., et al., A Durable PEFC with Carbon-Supported Pt – TiO2 Cathode: A Cause and Effect Study. Journal of The Electrochemical Society, 2010. 157(7): p. B1000-B1007.
145. Bartholomew, R.F. and D.R. Frankl, Electrical Properties of Some Titanium Oxides. Physical Review, 1969. 187(3): p. 828-833.
146. Jaksic, J.M., et al., Spillover of primary oxides as a dynamic catalytic effect of interactive hypo-d-oxide supports. Electrochimica Acta, 2007. 53(2): p. 349-361.
147. Smith, J.R., F.C. Walsh, and R.L. Clarke, Electrodes based on Magneli phase titanium oxides: the properties and applications of EbonexR materials. Journal of Applied Electrochemistry, 1998. 28(10): p. 1021-1033.
148. Ioroi, T., et al., Stability of Corrosion-Resistant Magneli-Phase Ti4O7-Supported PEMFC Catalysts at High Potentials. Journal of The Electrochemical Society, 2008. 155(4): p. B321-B326.
149. Wang, X., et al., Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. Journal of Power Sources, 2006. 158(1): p. 154-159.
150. Li, W., et al., Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells. The Journal of Physical Chemistry B, 2003. 107(26): p. 6292-6299.
151. Li, W., et al., Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon, 2002. 40(5): p. 791-794.
152. Matsumoto, T., et al., Efficient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells. Catalysis Today, 2004. 90(3–4): p. 277-281.
153. Saha, M.S., et al., 3-D composite electrodes for high performance PEM fuel cells composed of Pt supported on nitrogen-doped carbon nanotubes grown on carbon paper. Electrochemistry Communications, 2009. 11(2): p. 438-441.
154. Zhou, Y., et al., Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy & Environmental Science, 2010. 3(10): p. 1437-1446.
155. Kim, Y.-T., et al., Fine Size Control of Platinum on Carbon Nanotubes: From Single Atoms to Clusters. Angewandte Chemie International Edition, 2006. 45(3): p. 407-411.
156. Yang, D.Q., B. Hennequin, and E. Sacher, XPS Demonstration of π−π Interaction between Benzyl Mercaptan and Multiwalled Carbon Nanotubes and Their Use in the Adhesion of Pt Nanoparticles. Chemistry of Materials, 2006. 18(21): p. 5033-5038.
157. Kuang, Q., et al., Controllable fabrication of SnO2-coated multiwalled carbon nanotubes by chemical vapor deposition. Carbon, 2006. 44(7): p. 1166-1172.
158. Du, C., et al., A novel CNT@SnO2 core–sheath nanocomposite as a stabilizing support for catalysts of proton exchange membrane fuel cells. Electrochemistry Communications, 2009. 11(2): p. 496-498.
159. Guo, S., S. Dong, and E. Wang, Constructing Carbon-Nanotube/Metal Hybrid Nanostructures Using Homogeneous TiO2 as a Spacer. Small, 2008. 4(8): p. 1133-1138.
160. Jiang, Z.-Z., et al., Ultrahigh stable carbon riveted Pt/TiO2-C catalyst prepared by in situ carbonized glucose for proton exchange membrane fuel cell. Energy & Environmental Science, 2011. 4(3): p. 728-735.
161. Song, H., et al., Design and preparation of highly active carbon nanotube-supported sulfated TiO2 and platinum catalysts for methanol electrooxidation. Journal of Power Sources, 2010. 195(6): p. 1610-1614.
162. Jiang, Z.-Z., et al., Carbon riveted microcapsule Pt/MWCNTs-TiO2 catalyst prepared by in situ carbonized glucose with ultrahigh stability for proton exchange membrane fuel cell. Energy & Environmental Science, 2011. 4(7): p. 2558-2566.
163. Yao, Y., et al., Photoreactive TiO2/Carbon Nanotube Composites: Synthesis and Reactivity. Environmental Science & Technology, 2008. 42(13): p. 4952-4957.
164. Wang, G.-J. and S.-W. Chou, Electrophoretic deposition of uniformly distributed TiO 2 nanoparticles using an anodic aluminum oxide template for efficient photolysis. Nanotechnology, 2010. 21(11): p. 115206.
165. Liu, J., et al., Structure and Photoluminescence Study of TiO2 Nanoneedle Texture along Vertically Aligned Carbon Nanofiber Arrays. The Journal of Physical Chemistry C, 2008. 112(44): p. 17127-17132.
166. Lewera, A., et al., Metal–Support Interactions between Nanosized Pt and Metal Oxides (WO3 and TiO2) Studied Using X-ray Photoelectron Spectroscopy. The Journal of Physical Chemistry C, 2011. 115(41): p. 20153-20159.
167. Aviles, F., et al., Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon, 2009. 47(13): p. 2970-2975.
168. Zhang, W., et al., Carbon nanotube architectures as catalyst supports for proton exchange membrane fuel cells. Energy & Environmental Science, 2010. 3(9): p. 1286-1293.
169. Schubert, U., Chemical modification of titanium alkoxides for sol-gel processing. Journal of Materials Chemistry, 2005. 15(35-36): p. 3701-3715.
170. Barboux-Doeuff, S. and C. Sanchez, Synthesis and characterization of titanium oxide-based gels synthesized from acetate modified titanium butoxide precursors. Materials Research Bulletin, 1994. 29(1): p. 1-13.
171. Simonsen, M. and E. Sogaard, Sol–gel reactions of titanium alkoxides and water: influence of pH and alkoxy group on cluster formation and properties of the resulting products. Journal of Sol-Gel Science and Technology, 2010. 53(3): p. 485-497.
172. Soucek, M.D., et al., Preparation of nano-sized UV-absorbing titanium-oxo-clusters via a photo-curing ceramer process. Polymers for Advanced Technologies, 2005. 16(2-3): p. 257-261.
173. Legrand-Buscema, C., C. Malibert, and S. Bach, Elaboration and characterization of thin films of TiO2 prepared by sol–gel process. Thin Solid Films, 2002. 418(2): p. 79-84.
174. Kao, L.-H., T.-C. Hsu, and H.-Y. Lu, Sol–gel synthesis and morphological control of nanocrystalline TiO2 via urea treatment. Journal of Colloid and Interface Science, 2007. 316(1): p. 160-167.
175. Sharif Zein, S.H. and A.R. Boccaccini, Synthesis and Characterization of TiO2 Coated Multiwalled Carbon Nanotubes Using a Sol Gel Method. Industrial & Engineering Chemistry Research, 2008. 47(17): p. 6598-6606.
176. Chen, M.-l., F.-j. Zhang, and W.-c. Oh, Synthesis, characterization, and photocatalytic analysis of CNT/TiO2 composites derived from MWCNTs and titanium sources. New Carbon Materials, 2009. 24(2): p. 159-166.
177. Vix-Guterl, C., et al., Surface Characterizations of Carbon Multiwall Nanotubes: Comparison between Surface Active Sites and Raman Spectroscopy. The Journal of Physical Chemistry B, 2004. 108(50): p. 19361-19367.
178. Baby, T.T. and S. Ramaprabhu, Experimental investigation of the thermal transport properties of a carbon nanohybrid dispersed nanofluid. Nanoscale, 2011. 3(5): p. 2208-2214.
179. Antunes, E.F., et al., Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation. Carbon, 2006. 44(11): p. 2202-2211.
180. Shao, D., et al., Plasma Induced Grafting Carboxymethyl Cellulose on Multiwalled Carbon Nanotubes for the Removal of UO22+ from Aqueous Solution. The Journal of Physical Chemistry B, 2009. 113(4): p. 860-864.
181. Moon, J.-M., et al., High-Yield Purification Process of Singlewalled Carbon Nanotubes. The Journal of Physical Chemistry B, 2001. 105(24): p. 5677-5681.
182. Lee, S.W. and W.M. Sigmund, Formation of anatase TiO2 nanoparticles on carbon nanotubes. Chemical Communications, 2003. 9(6): p. 780-781.
183. Yang, X.H., et al., Ultra-thin anatase TiO2 nanosheets dominated with {001} facets: thickness-controlled synthesis, growth mechanism and water-splitting properties. CrystEngComm, 2011. 13(5): p. 1378-1383.
184. Okpalugo, T., et al., High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon, 2005. 43(1): p. 153-161.
185. Chen, L., et al., Preparation and characterization of CNTs–TiO composites. Powder Technology, 2005. 154(1): p. 70-72.
186. Akhavan, O., et al., Visible light photo-induced antibacterial activity of CNT–doped TiO2 thin films with various CNT contents. Journal of Materials Chemistry, 2010. 20(35): p. 7386.
187. An, G., et al., Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon, 2007. 45(9): p. 1795-1801.
188. Akhavan, O., et al., Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation. Carbon, 2009. 47(14): p. 3280-3287.
189. Chen, L.-C., et al., Enhanced visible light-induced photoelectrocatalytic degradation of phenol by carbon nanotube-doped TiO2 electrodes. Electrochimica Acta, 2009. 54(15): p. 3884-3891.
190. Huang, Y., et al., Effect of Carbon Doping on the Mesoporous Structure of Nanocrystalline Titanium Dioxide and Its Solar-Light-Driven Photocatalytic Degradation of NOx. Langmuir, 2008. 24(7): p. 3510-3516.
191. Jiang, Z.-Z., et al., Carbon riveted Pt/C catalyst with high stability prepared by in situ carbonized glucose. Chemical Communications, 2010. 46(37): p. 6998-7000.
192. Awaludin, Z., et al., Enhanced Electrocatalysis of Oxygen Reduction on Pt/TaOx/GC. The Journal of Physical Chemistry C, 2011. 115(51): p. 25557-25567.
193. Beard, B.C. and J. Philip N. Ross, Characterization of a Titanium-Promoted Supported Platinum Electrocatalyst. Journal of The Electrochemical Society, 1986. 133(9): p. 1839-1845.
194. Mansour, A.N., J.W. Cook, and D.E. Sayers, Quantitative technique for the determination of the number of unoccupied d-electron states in a platinum catalyst using the L2,3 x-ray absorption edge spectra. The Journal of Physical Chemistry, 1984. 88(11): p. 2330-2334.
195. Reifsnyder, S.N., et al., Hydrogen Chemisorption on Silica-Supported Pt Clusters:  In Situ X-ray Absorption Spectroscopy. The Journal of Physical Chemistry B, 1997. 101(25): p. 4972-4977.
196. Liu, Z.-T., et al., Selective hydrogenation of cinnamaldehyde over Pt-supported multi-walled carbon nanotubes: Insights into the tube-size effects. Applied Catalysis A: General, 2008. 344(1–2): p. 114-123.
197. Zhang, S., et al., Electronic Manifestation of Cation-Vacancy-Induced Magnetic Moments in a Transparent Oxide Semiconductor: Anatase Nb:TiO2. Advanced Materials, 2009. 21(22): p. 2282-2287.
198. Pozio, A., et al., Comparison of high surface Pt/C catalysts by cyclic voltammetry. Journal of Power Sources, 2002. 105(1): p. 13-19.
199. Jalan, V. and E.J. Taylor, Importance of Interatomic Spacing in Catalytic Reduction of Oxygen in Phosphoric Acid. Journal of The Electrochemical Society, 1983. 130(11): p. 2299-2302.
200. Brushett, F.R., et al., A Carbon-Supported Copper Complex of 3,5-Diamino-1,2,4-triazole as a Cathode Catalyst for Alkaline Fuel Cell Applications. Journal of the American Chemical Society, 2010. 132(35): p. 12185-12187.
201. Wasmus, S. and A. Kuver, Methanol oxidation and direct methanol fuel cells: A selective review. Journal of Electroanalytical Chemistry, 1999. 461(1-2): p. 14-31.
202. Liu, H., et al., A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources, 2006. 155(2): p. 95-110.
203. Batista, E.A., et al., New mechanistic aspects of methanol oxidation. Journal of Electroanalytical Chemistry, 2004. 571(2): p. 273-282.
204. Sun, Z., et al., Pt−Ru/CeO2/Carbon Nanotube Nanocomposites: An Efficient Electrocatalyst for Direct Methanol Fuel Cells. Langmuir, 2010. 26(14): p. 12383-12389.
205. Justin, P., P. Hari Krishna Charan, and G. Ranga Rao, High performance Pt–Nb2O5/C electrocatalysts for methanol electrooxidation in acidic media. Applied Catalysis B: Environmental, 2010. 100(3–4): p. 510-515.
206. Cao, L., et al., Novel Nanocomposite Pt/RuO2⋅x H2O/Carbon Nanotube Catalysts for Direct Methanol Fuel Cells. Angewandte Chemie International Edition, 2006. 45(32): p. 5315-5319.
207. Rajesh, B., et al., Carbon Nanotubes Generated from Template Carbonization of Polyphenyl Acetylene as the Support for Electrooxidation of Methanol. The Journal of Physical Chemistry B, 2003. 107(12): p. 2701-2708.
208. Xu, C., et al., Hierarchical Nanoporous PtFe Alloy with Multimodal Size Distributions and Its Catalytic Performance toward Methanol Electrooxidation. Langmuir, 2011. 28(3): p. 1886-1892.
209. Xia, B.Y., et al., One-Pot Synthesis of Cubic PtCu3 Nanocages with Enhanced Electrocatalytic Activity for the Methanol Oxidation Reaction. Journal of the American Chemical Society, 2012. 134(34): p. 13934-13937.
210. Lee, K.-S., et al., Surface Structures and Electrochemical Activities of Pt Overlayers on Ir Nanoparticles. Langmuir, 2011. 27(6): p. 3128-3137.
211. Hwang, S.J., et al., Facile synthesis of highly active and stable Pt-Ir/C electrocatalysts for oxygen reduction and liquid fuel oxidation reaction. Chemical Communications, 2010. 46(44): p. 8401-8403.
212. Ley, K.L., et al., Methanol Oxidation on Single‐Phase Pt‐Ru‐Os Ternary Alloys. Journal of The Electrochemical Society, 1997. 144(5): p. 1543-1548.
213. Chu, Y.H. and Y.G. Shul, Combinatorial investigation of Pt–Ru–Sn alloys as an anode electrocatalysts for direct alcohol fuel cells. International Journal of Hydrogen Energy, 2010. 35(20): p. 11261-11270.
214. Li, M., et al., Ethanol oxidation on the ternary Pt–Rh–SnO2/C electrocatalysts with varied Pt:Rh:Sn ratios. Electrochimica Acta, 2010. 55(14): p. 4331-4338.
215. Jian, X.-H., et al., Pt-Ru and Pt-Mo electrodeposited onto Ir-IrO2 nanorods and their catalytic activities in methanol and ethanol oxidation. Journal of Materials Chemistry, 2009. 19(11): p. 1601-1607.
216. Du, B. and Tong, A Coverage-Dependent Study of Pt Spontaneously Deposited onto Au and Ru Surfaces:  Direct Experimental Evidence of the Ensemble Effect for Methanol Electro-Oxidation on Pt. The Journal of Physical Chemistry B, 2005. 109(38): p. 17775-17780.
217. Rabis, A., P. Rodriguez, and T.J. Schmidt, Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges. ACS Catalysis, 2012. 2(5): p. 864-890.
218. Winter, M. and R.J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews, 2004. 104(10): p. 4245-4270.
219. Shui, J.-l., C. Chen, and J.C.M. Li, Evolution of Nanoporous Pt–Fe Alloy Nanowires by Dealloying and their Catalytic Property for Oxygen Reduction Reaction. Advanced Functional Materials, 2011. 21(17): p. 3357-3362.
220. Van Der Vliet, D.F., et al., Mesostructured thin films as electrocatalysts with tunable composition and surface morphology. Nature Materials, 2012. 11(12): p. 1051-1058.
221. Borup, R., et al., Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation. Chemical Reviews, 2007. 107(10): p. 3904-3951.
222. Zhou, Z.-Y., et al., Ligand-Mediated Electrocatalytic Activity of Pt Nanoparticles for Oxygen Reduction Reactions. The Journal of Physical Chemistry C, 2012. 116(19): p. 10592-10598.
223. Koh, S. and P. Strasser, Electrocatalysis on Bimetallic Surfaces:  Modifying Catalytic Reactivity for Oxygen Reduction by Voltammetric Surface Dealloying. Journal of the American Chemical Society, 2007. 129(42): p. 12624-12625.
224. Alia, S.M., et al., Platinum-Coated Palladium Nanotubes as Oxygen Reduction Reaction Electrocatalysts. ACS Catalysis, 2012. 2(5): p. 858-863.
225. Yu, T., et al., Platinum Concave Nanocubes with High-Index Facets and Their Enhanced Activity for Oxygen Reduction Reaction. Angewandte Chemie International Edition, 2011. 50(12): p. 2773-2777.
226. Liu, Y., et al., Nano-Pt Modified Aligned Carbon Nanotube Arrays Are Efficient, Robust, High Surface Area Electrocatalysts. Chemistry of Materials, 2008. 20(8): p. 2603-2605.
227. Subban, C.V., et al., Sol−Gel Synthesis, Electrochemical Characterization, and Stability Testing of Ti0.7W0.3O2 Nanoparticles for Catalyst Support Applications in Proton-Exchange Membrane Fuel Cells. Journal of the American Chemical Society, 2010. 132(49): p. 17531-17536.
228. Wang, C.-B., Y. Cai, and I.E. Wachs, Reaction-Induced Spreading of Metal Oxides onto Surfaces of Oxide Supports during Alcohol Oxidation:  Phenomenon, Nature, and Mechanisms. Langmuir, 1999. 15(4): p. 1223-1235.
229. Centi, G., Nature of active layer in vanadium oxide supported on titanium oxide and control of its reactivity in the selective oxidation and ammoxidation of alkylaromatics. Applied Catalysis A: General, 1996. 147(2): p. 267-298.
230. Zheng, N. and G.D. Stucky, A General Synthetic Strategy for Oxide-Supported Metal Nanoparticle Catalysts. Journal of the American Chemical Society, 2006. 128(44): p. 14278-14280.
231. Akalework, N.G., et al., Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs. Journal of Materials Chemistry, 2012.
232. Diebold, U., The surface science of titanium dioxide. Surface Science Reports, 2003. 48(5–8): p. 53-229.
233. Maiyalagan, T., B. Viswnathan, and U.V. Varadaraju, Electro-oxidation of methanol on TiO 2 nanotube supported platinum electrodes. Journal of Nanoscience and Nanotechnology, 2006. 6(7): p. 2067-2071.
234. Chen, X. and S.S. Mao, Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 2007. 107(7): p. 2891-2959.
235. Liu, Z., et al., Solvothermal synthesis of mesoporous Eu2O3–TiO2 composites. Microporous and Mesoporous Materials, 2005. 81(1–3): p. 169-174.
236. Huang, K., et al., Increasing Pt oxygen reduction reaction activity and durability with a carbon-doped TiO2 nanocoating catalyst support. Journal of Materials Chemistry, 2012. 22(33): p. 16824-16832.
237. Koninck, M.D., P. Manseau, and B. Marsan, Preparation and characterization of Nb-doped TiO2 nanoparticles used as a conductive support for bifunctional CuCo2O4 electrocatalyst. Journal of Electroanalytical Chemistry, 2007. 611(1–2): p. 67-79.
238. Elezović, N.R., et al., Synthesis, characterization and electrocatalytical behavior of Nb–TiO2/Pt nanocatalyst for oxygen reduction reaction. Journal of Power Sources, 2010. 195(13): p. 3961-3968.
239. Awasthi, R. and R.N. Singh, Ternary platinum-multiwall carbon nanotube-cobaltite composites for methanol electrooxidation. International Journal of Electrochemical Science, 2011. 6(10): p. 4775-4786.
240. Huang, X., et al., Simplifying the Creation of Hollow Metallic Nanostructures: One-Pot Synthesis of Hollow Palladium/Platinum Single-Crystalline Nanocubes. Angewandte Chemie International Edition, 2009. 48(26): p. 4808-4812.
241. Liu, G., et al., Visible Light Photocatalyst:  Iodine-Doped Mesoporous Titania with a Bicrystalline Framework. The Journal of Physical Chemistry B, 2006. 110(42): p. 20823-20828.
242. Gasmi, A., et al., Influence of non-magnetic Ti 4+ ion doping at Mn site on structural and magnetic properties of La 0.67 Ba 0.33 MnO 3. Journal of Physics D: Applied Physics, 2009. 42(22): p. 225408.
243. Radmilovic, V., H.A. Gasteiger, and P.N. Ross, Structure and Chemical Composition of a Supported Pt-Ru Electrocatalyst for Methanol Oxidation. Journal of Catalysis, 1995. 154(1): p. 98-106.
244. Holzwarth, U. and N. Gibson, The Scherrer equation versus the 'Debye-Scherrer equation'. Nature Nanotechnology, 2011. 6(9): p. 534.
245. Ghorai, T.K., S. Pramanik, and P. Pramanik, Synthesis and photocatalytic oxidation of different organic dyes by using Mn2O3/TiO2 solid solution and visible light. Applied Surface Science, 2009. 255(22): p. 9026-9031.
246. Liu, Y., et al., FT-IR Spectroscopic Study of the Oxidation of Chlorobenzene over Mn-Based Catalyst. Langmuir, 2002. 18(16): p. 6229-6232.
247. Chen, S., et al., Graphene Oxide−MnO2 Nanocomposites for Supercapacitors. ACS Nano, 2010. 4(5): p. 2822-2830.
248. Pereira, A.L.J., et al., Structural and Electronic Effects of Incorporating Mn in TiO2 Films Grown by Sputtering: Anatase versus Rutile. The Journal of Physical Chemistry C, 2012. 116(15): p. 8753-8762.
249. Parayanthal, P. and F.H. Pollak, Raman Scattering in Alloy Semiconductors: "Spatial Correlation" Model. Physical Review Letters, 1984. 52(20): p. 1822-1825.
250. Sharma, S., et al., Room temperature ferromagnetism in Mn doped TiO 2 thin films: Electronic structure and Raman investigations. Journal of Applied Physics, 2011. 109(8).
251. Jiao, F., et al., Synthesis of Ordered Mesoporous Fe3O4 and γ-Fe2O3 with Crystalline Walls Using Post-Template Reduction/Oxidation. Journal of the American Chemical Society, 2006. 128(39): p. 12905-12909.
252. Jia, C., et al., Enhanced Photoelectrocatalytic Activity of Methanol Oxidation on TiO2-Decorated Nanoporous Gold. The Journal of Physical Chemistry C, 2009. 113(36): p. 16138-16143.
253. Purewal, J.J., et al., Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers. Nanotechnology, 2009. 20(20): p. 204012.
254. Jeong, Y.U. and A. Manthiram, Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes. Journal of The Electrochemical Society, 2002. 149(11): p. A1419-A1422.
255. Hong, M.S., S.H. Lee, and S.W. Kim, Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor. Electrochemical and Solid-State Letters, 2002. 5(10): p. A227-A230.
256. Kim, H. and B.N. Popov, Synthesis and characterization of MnO2-based mixed oxides as supercapacitors. Journal of The Electrochemical Society, 2003. 150(3): p. D56-D62.
257. Brousse, T., et al., Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors. Journal of The Electrochemical Society, 2006. 153(12): p. A2171-A2180.
258. Kuo, S.-L. and N.-L. Wu, Investigation of Pseudocapacitive Charge-Storage Reaction of MnO2 ∙ nH2O Supercapacitors in Aqueous Electrolytes. Journal of The Electrochemical Society, 2006. 153(7): p. A1317-A1324.
259. Belli, M., et al., X-ray absorption near edge structures (XANES) in simple and complex Mn compounds. Solid State Communications, 1980. 35(4): p. 355-361.
260. Krstajic, N.V., et al., Advances in interactive supported electrocatalysts for hydrogen and oxygen electrode reactions. Surface Science, 2007. 601(9): p. 1949-1966.
261. Gasteiger, H.A., et al., Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys. The Journal of Physical Chemistry, 1993. 97(46): p. 12020-12029.
262. Chakraborty, D., I. Chorkendorff, and T. Johannessen, Electrochemical impedance spectroscopy study of methanol oxidation on nanoparticulate PtRu direct methanol fuel cell anodes: Kinetics and performance evaluation. Journal of Power Sources, 2006. 162(2): p. 1010-1022.
263. Pasupathi, S. and V. Tricoli, Effect of third metal on the electrocatalytic activity of PtRu/Vulcan for methanol electro-oxidation. Journal of Solid State Electrochemistry, 2008. 12(9): p. 1093-1100.
264. Bock, C., et al., Size-Selected Synthesis of PtRu Nano-Catalysts:  Reaction and Size Control Mechanism. Journal of the American Chemical Society, 2004. 126(25): p. 8028-8037.
265. Li, B., et al., Highly active Pt–Ru nanowire network catalysts for the methanol oxidation reaction. Catalysis Communications, 2012. 18(0): p. 51-54.
266. Wang, H., et al., Methanol oxidation on Pt, PtRu, and colloidal Pt electrocatalysts: a DEMS study of product formation. Journal of Electroanalytical Chemistry, 2001. 509(2): p. 163-169.
267. Kakade, B.A., et al., Highly Active Bimetallic PdPt and CoPt Nanocrystals for Methanol Electro-oxidation. The Journal of Physical Chemistry C, 2012. 116(13): p. 7464-7470.
268. Zhao, X., et al., Enhanced activity of Pt nano-crystals supported on a novel TiO2@N-doped C nano-composite for methanol oxidation reaction. Journal of Materials Chemistry, 2012. 22(37): p. 19718-19725.
269. Yu, X., L. Kuai, and B. Geng, CeO2/rGO/Pt sandwich nanostructure: rGO-enhanced electron transmission between metal oxide and metal nanoparticles for anodic methanol oxidation of direct methanol fuel cells. Nanoscale, 2012. 4(18): p. 5738-5743.
270. Zhao, J., et al., Methanol electrocatalytic oxidation on highly dispersed platinum-ruthenium/graphene catalysts prepared in supercritical carbon dioxide-methanol solution. RSC Advances, 2012. 2(25): p. 9651-9659.
271. Ou, D.R., et al., Microstructural and Metal−Support Interactions of the Pt−CeO2/C Catalysts for Direct Methanol Fuel Cell Application. Langmuir, 2011. 27(7): p. 3859-3866.
272. Xia, B.Y., et al., Sandwich-structured TiO2-Pt-graphene ternary hybrid electrocatalysts with high efficiency and stability. Journal of Materials Chemistry, 2012. 22(32): p. 16499-16505.
273. Chrzanowski, W. and A. Wieckowski, Ultrathin films of ruthenium on low index platinum single crystal surfaces: An electrochemical study. Langmuir, 1997. 13(22): p. 5974-5978.
274. Marković, N.M. and P.N. Ross Jr, Surface science studies of model fuel cell electrocatalysts. Surface Science Reports, 2002. 45(4–6): p. 117-229.
275. Maillard, F., et al., Is carbon-supported Pt-WOx composite a CO-tolerant material? Electrochimica Acta, 2007. 52(5): p. 1958-1967.
276. Petukhov, A.V., et al., Kinetics of electrooxidation of a CO monolayer at the platinum/electrolyte interface. Surface Science, 1998. 402-404: p. 182-186.
277. Lebedeva, N.P., et al., Role of Crystalline Defects in Electrocatalysis:  CO Adsorption and Oxidation on Stepped Platinum Electrodes As Studied by in situ Infrared Spectroscopy. The Journal of Physical Chemistry B, 2002. 106(38): p. 9863-9872.
278. Lebedeva, N.P., et al., Role of Crystalline Defects in Electrocatalysis:  Mechanism and Kinetics of CO Adlayer Oxidation on Stepped Platinum Electrodes. The Journal of Physical Chemistry B, 2002. 106(50): p. 12938-12947.
279. Heat of adsorption of parahydrogen and orthodeuterium on graphon. J. Phys. Chem., 1959. 63(9): p. 1398.
280. Waszczuk, P., et al., Methanol electrooxidation on platinum/ruthenium nanoparticle catalysts. Journal of Catalysis, 2001. 203(1): p. 1-6.
281. Maillard, F., et al., Electrooxidation of Carbon Monoxide at Ruthenium–Modified Platinum Nano-particles: Evidence for CO Surface Mobility. Fuel Cells, 2002. 2(3-4): p. 143-152.
282. Maillard, F., et al., Ru-Decorated Pt Surfaces as Model Fuel Cell Electrocatalysts for CO Electrooxidation. The Journal of Physical Chemistry B, 2005. 109(34): p. 16230-16243.
283. Liu, F., J.Y. Lee, and W.J. Zhou, Segmented Pt/Ru, Pt/Ni, and Pt/RuNi Nanorods as Model Bifunctional Catalysts for Methanol Oxidation. Small, 2006. 2(1): p. 121-128.
284. Shanmugam, S. and A. Gedanken, Synthesis and Electrochemical Oxygen Reduction of Platinum Nanoparticles Supported on Mesoporous TiO2. The Journal of Physical Chemistry C, 2009. 113(43): p. 18707-18712.
285. Waje, M., et al., Effect of Scan Range on Pt Surface Area Loss in Potential Cycling Experiments. ECS Transactions, 2007. 11(1): p. 1227-1233.
286. Cypes, S., et al., High throughput screening of low temperature CO oxidation catalysts using IR thermography. Combinatorial Chemistry and High Throughput Screening, 2007. 10(1): p. 25-35.
287. Herzing, A.A., et al., Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science, 2008. 321(5894): p. 1331-1335.
288. Zhang, C., P. Hu, and A. Alavi, A General Mechanism for CO Oxidation on Close-Packed Transition Metal Surfaces. Journal of the American Chemical Society, 1999. 121(34): p. 7931-7932.
289. Liu, K., A. Wang, and T. Zhang, Recent Advances in Preferential Oxidation of CO Reaction over Platinum Group Metal Catalysts. ACS Catalysis, 2012. 2(6): p. 1165-1178.
290. Chen, M.S. and D.W. Goodman, The Structure of Catalytically Active Gold on Titania. Science, 2004. 306(5694): p. 252-255.
291. Sun, D., et al., Theoretical Study of the Role of a Metal–Cation Ensemble at the Oxide–Metal Boundary on CO Oxidation. The Journal of Physical Chemistry C, 2012. 116(13): p. 7491-7498.
292. Saalfrank, J.W. and W.F. Maier, Directed Evolution of Noble-Metal-Free Catalysts for the Oxidation of CO at Room Temperature. Angewandte Chemie International Edition, 2004. 43(15): p. 2028-2031.
293. Luo, L., H. Zhong, and X. Yang, Oxidative performance and surface properties of Co-containing mixed oxides having the K2MF4 structure. Journal of the Serbian Chemical Society, 2004. 69(10): p. 783-790.
294. Guzman, J., S. Carrettin, and A. Corma, Spectroscopic Evidence for the Supply of Reactive Oxygen during CO Oxidation Catalyzed by Gold Supported on Nanocrystalline CeO2. Journal of the American Chemical Society, 2005. 127(10): p. 3286-3287.
295. Liu, Z.-P., P. Hu, and A. Alavi, Catalytic Role of Gold in Gold-Based Catalysts:  A Density Functional Theory Study on the CO Oxidation on Gold. Journal of the American Chemical Society, 2002. 124(49): p. 14770-14779.
296. Zou, H., et al., Selective CO oxidation over CuO–CeO2 catalysts doped with transition metal oxides. Powder Technology, 2011. 207(1–3): p. 238-244.
297. Camellone, M.F. and S. Fabris, Reaction Mechanisms for the CO Oxidation on Au/CeO2 Catalysts: Activity of Substitutional Au3+/Au+ Cations and Deactivation of Supported Au+ Adatoms. Journal of the American Chemical Society, 2009. 131(30): p. 10473-10483.
298. Wang, H.-F., et al., Structure and Catalytic Activity of Gold in Low-Temperature CO Oxidation. The Journal of Physical Chemistry C, 2009. 113(15): p. 6124-6131.
299. Wang, C.-M., K.-N. Fan, and Z.-P. Liu, Origin of Oxide Sensitivity in Gold-Based Catalysts:  A First Principle Study of CO Oxidation over Au Supported on Monoclinic and Tetragonal ZrO2. Journal of the American Chemical Society, 2007. 129(9): p. 2642-2647.
300. Kim, H.Y., et al., CO Oxidation by Rutile TiO2(110) Doped with V, W, Cr, Mo, and Mn. The Journal of Physical Chemistry C, 2008. 112(32): p. 12398-12408.
301. Yu, S., et al., Preparation and characterization of Fe-doped TiO2 nanoparticles as a support for a high performance CO oxidation catalyst. Journal of Materials Chemistry, 2012. 22(25): p. 12629-12635.
302. Dy, E., et al., Electronic Conductivity and Stability of Doped Titania (Ti1−XMXO2, M = Nb, Ru, and Ta)—A Density Functional Theory-Based Comparison. The Journal of Physical Chemistry C, 2010. 114(31): p. 13162-13167.
303. Chretien, S. and H. Metiu, Density Functional Study of the CO Oxidation on a Doped Rutile TiO2(110): Effect of Ionic Au in Catalysis. Catalysis Letters, 2006. 107(3-4): p. 143-147.
304. Laguna, O.H., et al., Gold supported on metal-doped ceria catalysts (M = Zr, Zn and Fe) for the preferential oxidation of CO (PROX). Journal of Catalysis, 2010. 276(2): p. 360-370.
305. Haruta, M., Size- and support-dependency in the catalysis of gold. Catalysis Today, 1997. 36(1): p. 153-166.
306. Lin, J., et al., Design of a Highly Active Ir/Fe(OH)x Catalyst: Versatile Application of Pt-Group Metals for the Preferential Oxidation of Carbon Monoxide. Angewandte Chemie International Edition, 2012. 51(12): p. 2920-2924.
307. Vajda, S., et al., Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nature Materials, 2009. 8(3): p. 213-216.
308. Jernigan, G.G. and G.A. Somorjai, Carbon Monoxide Oxidation over Three Different Oxidation States of Copper: Metallic Copper, Copper (I) Oxide, and Copper (II) Oxide - A Surface Science and Kinetic Study. Journal of Catalysis, 1994. 147(2): p. 567-577.
309. Wright, P.A., et al., Mixed-metal amorphous and spinel phase oxidation catalysts: characterization by x-ray diffraction, x-ray absorption, electron microscopy, and catalytic studies of systems containing copper, cobalt, and manganese. Chemistry of Materials, 1992. 4(5): p. 1053-1065.
310. Gardner, S.D., et al., Comparison of the performance characteristics of Pt/SnOx and Au/MnOx catalysts for low-temperature CO oxidation. Journal of Catalysis, 1991. 129(1): p. 114-120.
311. Tang, D., et al., CO oxidation catalyzed by silver nanoclusters: mechanism and effects of charge. Physical Chemistry Chemical Physics, 2012. 14(37): p. 12829-12837.
312. Sanchez, A., et al., When Gold Is Not Noble:  Nanoscale Gold Catalysts. The Journal of Physical Chemistry A, 1999. 103(48): p. 9573-9578.
313. Xu, J.P., et al., Effect of annealing ambient on the ferromagnetism of Mn-doped anatase TiO 2 films. Journal of Physics D: Applied Physics, 2007. 40(16): p. 4757-4760.
314. Qiao, B., et al., Single-atom catalysis of CO oxidation using Pt 1/FeO x. Nature Chemistry, 2011. 3(8): p. 634-641.
315. Fu, Q., H. Saltsburg, and M. Flytzani-Stephanopoulos, Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts. Science, 2003. 301(5635): p. 935-938.
316. Gong, X.-Q., et al., A Systematic Study of CO Oxidation on Metals and Metal Oxides:  Density Functional Theory Calculations. Journal of the American Chemical Society, 2003. 126(1): p. 8-9.
317. Fu, Q., et al., Gold-ceria catalysts for low-temperature water-gas shift reaction. Chemical Engineering Journal, 2003. 93(1): p. 41-53.

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE