簡易檢索 / 詳目顯示

研究生: 王晟澤
Cheng-tze Wang
論文名稱: 使用槽型天線之共面波導至矩形波導轉接
CPW to RWG transition using slot type antenna
指導教授: 王蒼容
Chun-Long Wang
口試委員: 陳浩暉
Hao-Hui Chen
陳士元
Shih-Yuan Chen
馬自莊
Tzyh-Ghuang Ma
曾昭雄
Chao-Hsiung Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 56
中文關鍵詞: 槽型天線偶極槽線天線領結型槽線天線共面波導矩形波導轉接
外文關鍵詞: slot type antenna, dipole slot antenna, bow-tie slot antenna, cpw, retangular waveguide, transition
相關次數: 點閱:230下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用偶極槽線天線以及領結型槽線天線來設計共面波導至矩形波導轉接,並且應用所設計的共面波導至矩形波導轉接,進一步形成共面波導至矩形波導功率分配器。我們所採用的矩形波導為標準的WR-90矩形波導,操作頻帶涵蓋X頻帶 (8.2-12.4 GHz)。
關於共面波導至矩形波導轉接,使用偶極槽線天線的共面波導至矩形波導轉接,其反射損耗在大於15 dB的頻寬大約為24.3 %,在這個頻寬之內,其穿透損耗都小於0.17 dB。為了加大頻寬,我們使用領結型槽線天線來實現共面波導至矩形波導轉接,這結構的反射損耗在大於15 dB的頻寬大約為27.2 %,稍微大於使用偶極槽線天線的共面波導至矩形波導轉接的頻寬,在這個頻率範圍內,其穿透損耗都小於0.17 dB。
關於共面波導至矩形波導功率分配器,使用偶極槽線天線的共面波導至矩形波導功率分配器,其反射損耗大於15 dB的頻寬大約為39.8 %,在這個頻寬之內,其穿透損耗都在3.08~3.27 dB之間,兩個輸出端的隔離度都在4.8~6.75 dB之間。使用領結型槽線天線的共面波導至矩形波導功率分配器,其反射損耗大於15 dB的頻寬涵蓋整個X-band,在X-band之內,其穿透損耗都在3.05~3.29 dB之間,兩個輸出端的隔離度都在5.48~6.87 dB之間。
為了驗證以上的結果,我們以背對背的方式,串接兩個共面波導至矩形波導轉接或者兩個共面波導至矩形波導功率分配器,電路製作好之後,我們使用Agilent E8326B PNA向量網路分析儀結合HP X11644A矩形波導校準件進行量測,量測所得的結果與模擬結果滿一致的,由此可以驗證這些設計的正確性。


This thesis proposes an idea of using a dipole slot antenna or a bow-tie slot antenna to realize coplanar waveguide (CPW) to rectangular waveguide (RWG) transitions. Furthermore, the CPW to RWG transitions are extended to the design of CPW to RWG power dividers. The RWG adopted here is the standard WR-90 rectangular waveguide where the operation band of this waveguide covers the whole X-band (8.2-12.4 GHz).
Regarding the CPW to RWG transitions, the CPW to RWG transition realized by using the dipole slot antenna has a bandwidth of 24.3 % for which the return loss (RL) is larger than 15 dB, where the corresponding insertion loss (IL) in this frequency range is smaller than 0.17 dB. On the other hand, the CPW to RWG transition realized by using the bow-tie slot antenna has bandwidth of 27.2 % for which the RL is larger than 15 dB, where the corresponding IL in this frequency range is smaller than 0.17 dB. It can be seen that the transition realized by using the bow-tie slot antenna has a broader bandwidth than that realized by using the dipole slot antenna has.
Concerning the CPW to RWG power dividers, the CPW to RWG power divider realized by using the dipole slot antenna has a bandwidth of 39.8% for which the RL is larger than 15 dB, where the corresponding IL in this frequency range varies slightly from 3.08 to 3.27 dB. Also, the isolation between the output ports in this frequency range varies from 4.8 to 6.75 dB. On the other hand, the CPW to RWG power divider realized by using the bow-tie slot antenna has a bandwidth covering the whole X-band for which RL is larger than 15 dB, where the corresponding IL in the X-band varies slightly from 3.05 to 3.29 dB. Also, the isolation between the output ports in this frequency range varies from 5.48 to 6.87 dB.
The design results of the CPW to RWG transitions or the CPW to RWG power dividers mentioned above are supported through measuring the implemented real circuits. Two CPW to RWG transitions or two CPW to RWG power dividers are connected back-to-back in order to facilitate the measurements. The fabricated circuits are measured through using the Agilent E8326B PNA after calibrating with HP X1164A RWG calibration kits. All the measurement results agree with the simulation results, which verify the correctness of our designs.

第一章 序論 1 1.1研究動機 1 1.2文獻探討 1 1.3目標及貢獻 3 1.4論文架構 4 第二章 運用槽型天線之共面波導至矩形波導轉接 14 2.1 使用偶極槽線天線之共面波導至矩形波導轉接 14 2.1.1 偶極槽線天線簡介 14 2.1.2 轉接架構 15 2.1.3 轉接分析與設計 17 2.1.4 實驗與量測 24 2.2 使用領結型槽線天線之共面波導至矩形波導轉接 28 2.2.1 轉接分析與設計 28 2.2.2 實驗與量測 33 第三章 運用槽型天線之共面波導至矩形波導功率分配器 36 3.1 使用偶極槽線天線之共面波導至矩形波導功率分配器 36 3.1.1轉接分析與設計 36 3.1.2實驗與量測 42 3.2 使用領結型天線之共面波導至矩形波導功率分配器 45 3.2.1轉接分析與設計 45 3.2.2實驗與量測 50 第四章 結論 53 參考文獻 54

[1] G.E. Ponchak and R. N. Simons, “A new rectangular waveguide to coplanar waveguide transition,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp. 491 -492, May 1990.
[2] W. Simon, M. Werthen and I. Wolff, “A novel coplanar transmission line to rectangular waveguide transition,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp. 257 -260, June 1998.
[3] O. Nagy, P. Heide, T. V. Kerssenbrock, A. Springer, R. Weige,“A novel uniplanar transition coplanar waveguide to rectangular waveguide,” European Microwave conference, pp.1 – 4, Oct. 2001.
[4] V. S. Möttönen and A. V. Räisänen, “Novel wideband coplanar waveguide-to-rectangular waveguide transition,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 8, pp. 1836–1842, Aug. 2004.
[5] C. F. Hung, A. S. Liu, C. H. Chien, C. L. Wang, and R. B. Wu, “Bandwidth enhancement on waveguide transition to conductor backed CPW with high dielectric constant substrate,” IEEE Microw. Wireless Compon. Lett. vol. 15, no. 2, pp. 128-130, Feb. 2005.
[6] T. H. Lin and R. B. Wu, “CPW to waveguide transition with tapered slotline probe,” IEEE Microw. Wireless Compon. Lett., vol. 11, no. 7, pp. 314–316, Jul. 2001.
[7] V. S. Möttönen, “Wideband coplanar waveguide-to-rectangular waveguide transition using fin-line taper,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 119-121 Feb. 2005.
[8] Grabherr, Wilfried; Menzel, Wolfgang, “A new transition from microstrip line to rectangular waveguide,” European Microwave conference, vol.2, pp.1170 – 1175, Oct. 1992.
[9] N. Kaneda, Y. Qian, and T. Itoh, “A broadband CPW-to-waveguide transition using quasi-Yagi antenna,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 12, pp. 2562-2567, Dec. 1999.
[10] R. Y. Fang, and C. L. Wang, “Wideband slotline-to-rectangular waveguide transition using truncated bow-tie antenna,” Asia-Pacific Microwave conference, vol.2, pp.1399 – 1402, Dec. 2006.
[11] M. S. Al Salameh, Yahia M. M. Antar, and Guy Séguin, “Coplanar-waveguide-fed slot-coupled rectangular dielectric resonator antenna,” IEEE Trans. Antennas Propag., vol. 50, no. 10, pp. 1415-1419, Oct. 2002.
[12] S. K. Padhi, N.C. Karmakar and C.L. Law, “CPW fed MMIC slot dipole for MM-wave applications,” IEEE AP-S Int. Symp. Dig., vol. 1, pp. 414–417, Jun. 2002.
[13] B. K. Kormanyos, W. Jr. Harokopus, L. P. B. Katehi, and G M. Rebeiz, “CPW-fed active slot antennas,” IEEE Trans. Microw. Theory Tech., vol. 42, pp. 541-545, Apr. 1994.
[14] S. Sierra-Garcia and J.-J. Laurin, “Study of a CPW inductively coupled slot antenna,” IEEE Trans. Antennas Propag., vol. 47, pp. 58-64, Jan. 1999.
[15] A. U. Bhobe, C. L. Holloway, M. Piket-May, and R. Hall, “Wide-band slot antennas with CPW feed lines: hybrid and log-periodic designs,” IEEE Trans. Antennas Propag., vol. 52, pp. 2545-2554, Oct. 1999.
[16] E. S. Angelopoulos, A. Z. Anastopoulos, C. E. Githonas, and D. I. Kaklamani, “A modified bow-tie slot antenna fed by a CPW-to-CPW transition loaded with inductively coupled slots for ultra wide-band applications,” IEEE International Workshop Antenna Technology, pp.513 – 516, Mar. 2005.
[17] E. S. Angelopoulos, Y. E. Stratakos, A. I. Kostaridis, D. I. Kaklamani, and N. K. Uzunoglu, “Multiband miniature coplanar waveguide slot antennas for GSM-802.11b and 802.11b-802.11a wireless applications,” Wireless Communications and Networking, vol. 1, pp.103 – 108, Mar. 2003.
[18] Y. H. Cho, “Analysis of an E-plane waveguide T-junction with a quarter-wave transformer using the overlapping T-block method and genetic algorithm,” IEE Proc.-Microw. Antennas Propag., Vol. 151, No. 6, pp. 503-506, Dec. 2004
[19] A. U. Bhobe, C. L. Holloway, M. Piket-May, and R. Hall“Wide-Band Slot Antennas With CPW Feed Lines:Hybrid and Log-Periodic Designs,” IEEE Trans. Antennas Propag., vol. 52, no. 10, pp. 2545- 2554, Oct. 2004.
[20] John D. Kraus and Ronald J. Marhefka, Antennas For All Applications, 3rd ed. New York:McGraw-Hill, 2003.
[21] J. B. Knorr and J. Saenz “End Effect in a Shorted Slot,” IEEE Trans. Microw. Theory Tech., vol. 21, no. 9, pp. 579–580, Sep. 1973.
[22] R. N. Simons and G. E. Ponchak “Modeling of Some Coplanar Waveguide Discontinuities,” IEEE Trans. Microw. Theory Tech., vol. 36, no. 12, pp. 297–300, Dec. 1988.

無法下載圖示 全文公開日期 2010/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2018/07/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE