簡易檢索 / 詳目顯示

研究生: 簡清山
Ching-shan Chien
論文名稱: 輸電電纜管路及人孔磁場改善之探討
Mitigation of Magnetic Field from Underground Transmission Line
指導教授: 吳啟瑞
Chi-Jui Wu
口試委員: 辜志承
Jyh-Cherng Gu
李尚懿
San-Yi Lee
楊金石
Jin-Shyr Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 168
中文關鍵詞: 電力頻率磁場地下電纜線路管路人孔屏蔽金屬板
外文關鍵詞: Power frequency magnetic field, Underground transmission lines, Ducts, Manholes, Shielding.
相關次數: 點閱:161下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討輸電電纜管路所產生電力頻率磁通密度之分佈情形,研討可行的抑低方法。首先搜集世界各國政府及組織對於電力頻率磁場的規範值,以及電磁生物效應之研究報告,做為磁場暴露限制值依據的分析探討。接著使用自行撰寫之MATLAB®程式計算磁場分佈情形,並利用相序排列與實際空間配置方式探討電纜之較佳佈設方式,以降低所產生的磁通密度。當已建設輸電線路通過敏感性地區時,為達成較大減磁效果,有時需考慮鋪設屏蔽金屬板。本文將使用導磁性材料及導電性材料做為屏蔽材料,透過FLUX3D®電磁數值分析程式,計算磁場屏蔽效能。最後由實例驗證,使用磁場量測儀器進行161kV電纜管路及人孔之磁場值實測,記錄使用屏蔽板施做減磁改善前後之磁場值變化情形,並與模擬計算值做比較。本文係依據實際電纜管路及人孔配置建構模型,冀望能確實掌握輸電電纜之磁場分佈特性,提出經濟面與工程兼具可行之減磁改善方法,俾使輸電電纜線路周圍的磁場值能儘量降低,減少民眾對輸電線所產生電磁場的疑慮。


    This thesis evaluates and analyze the power frequency magnetic field due to the underground transmission lines. It is required to develop the computation programs for use in magnetic field analysis and mitigation method selection. It is hoped to obtain the distribution of magnetic field produced by underground transmission lines and feasible strategies to increase the performance of transmission equipments. At first, the general purpose electromagnetic program, FLUX3D®, is used to set up the models to calculate the magnetic field values. The models should consider the types of ducts and manholes. Then a feasible approach could be used to reduce the magnetic field. It is to use relevant metal materials to shield the main magnetic field source to reduce the magnetic field conditions around ducts and manholes. At last, some measurement devices are used to measure the magnetic field around the cable to obtain the distribution characteristics of magnetic field, and an experiment of the shielding framework is made to prove the improving effect of the shielding. It is respected to find out the distribution characteristics of the electric frequency magnetic field of underground transmission lines. The mitigation methods should consider economics and technology feasibility to let the magnetic field around underground transmission lines is as low as possible.

    中文摘要……………………………………………………………i 英文摘要……………………………………………………………ii 誌 謝……………………………………………………………iii 目 錄……………………………………………………………iv 圖 索 引……………………………………………………………viii 表 索 引……………………………………………………………xiv 第一章 緒論……………………………………………………… 1 1.1 研究背景………………………………………………………1 1.2 研究目的………………………………………………………3 1.3 研究內容………………………………………………………4 1.4 章節概述………………………………………………………4 第二章 電力頻率電磁場值之生物效應與限制規範…………… 6 2.1 電磁場簡介……………………………………………………6 2.2 電磁場的性質與分類…………………………………………7 2.2.1 非游離輻射…………………………………………………7 2.2.2 游離輻射……………………………………………………10 2.3 電力頻率電磁場之生物效應…………………………………10 2.4 電力頻率磁場與健康問題關聯性的調查研究………………11 2.5 世界主要國家及國際組織對電磁場之限制規範……………16 2.6 國內政府對於電力頻率磁場之建議值………………………20 第三章 電力頻率磁場理論與計算程式………………………… 22 3.1 前言……………………………………………………………22 3.2 電磁理論………………………………………………………22 3.3 三相三線式導線磁通密度公式推導…………………………28 3.4 有限元素法……………………………………………………33 3.5 FLUX3D®程式介紹..………………………………………… 34 3.6 輸電電纜管路之磁場分佈模擬計算…………………………41 3.6.1 一回線電纜各種排列架構所產生磁場之分析比較………42 3.6.2 二回線垂直型(2×4排列)電纜管路之磁場分佈……… 46 3.6.3 四回線垂直型(2×7排列)電纜管路之磁場分佈……… 54 3.6.4 四回線方型(4×4排列)電纜管路之磁場分佈………… 57 3.6.5 八回線垂直型(2×8×2排列)電纜管路之磁場分佈…… 60 3.7 本章結論………………………………………………………62 第四章 電力頻率磁場屏蔽理論與模擬分析…………………… 63 4.1 前言……………………………………………………………63 4.2 電力頻率磁場屏蔽理論介紹…………………………………63 4.2.1 變數分離法(Variable Separation Method)…………65 4.2.2 保角變換法(Conformal Transformation Method)… 72 4.2.3 多重導體模式(Multiconductor Model)………………73 4.3 屏蔽材料介紹…………………………………………………74 4.3.1 鋁板…………………………………………………………74 4.3.2 矽鋼片………………………………………………………75 4.4 電纜管路屏蔽模擬分析………………………………………76 4.4.1 屏蔽板尺寸的影響…………………………………………79 4.4.2 屏蔽板位置的影響…………………………………………82 4.4.3 屏蔽板厚度的影響…………………………………………85 4.5 本章結論………………………………………………………88 第五章 屏蔽減磁之實例分析…………………………………… 89 5.1 前言……………………………………………………………89 5.2管路及人孔設備簡介………………………………………… 89 5.2.1 管路…………………………………………………………89 5.2.2 人孔…………………………………………………………90 5.3 人孔之磁場分佈模擬與屏蔽分析……………………………92 5.4 人孔施做屏蔽減磁改善前之磁場實測………………………114 5.5 人孔之減磁屏蔽施工…………………………………………124 5.6 人孔施做屏蔽減磁改善後之磁場實測………………………125 5.7 管路施作屏蔽減磁前後之磁場量測…………………………132 5.8 本章結論………………………………………………………137 第六章 結論……………………………………………………… 138 6.1 總結……………………………………………………………138 6.2 具體成果………………………………………………………139 6.3 未來研究方向…………………………………………………140 參考文獻……………………………………………………………141

    [1]臺灣電力公司網站,輸變電計畫簡介,http://www.taipower.com.tw .
    [2]N. Wertheimer and E. Leeper, “Electrical wiring configurations and childhood cancer,” American Journal of Epidemiology, Vol. 109, No. 3, pp. 273-284, 1979.
    [3]M. S. Linet, E. E. Hatch, R. A. Kleinerman, et al., “Residential exposure to magnetic fields and acute lymphoblastic leukemia in children,” The New England Journal of Medicine, Vol. 337, No. 1, pp. 1-8, 3 July 1997.
    [4]UK Childhood Cancer Study Investigators, “Exposure to power frequency magnetic fields and the risk of childhood cancer,” The Lancet, Vol. 354, No. 9194, pp. 1925-1931, 4 October 1999.
    [5]UK Childhood Cancer Study Investigators, “Childhood cancer and residential proximity to power lines,” British Journal of Cancer, Vol. 83, pp.1573-1580, Demceber 2000.
    [6]G. Draper, T. Vincent, M.E. Kroll, and J. Swanson, “Childhood cancer in relation to distance from high voltage power lines in England and Wales: a case-control study,” BMJ, Vol. 330, 4 June 2005.
    [7]李中ㄧ、林瑞雄,極低頻電磁場暴露與癌症之流行病學-文獻探討,勞工安全衛生研究季刊,Vol. 3, No. 2, pp. 1-24, 民國八十四年六月。
    [8]林瑞雄、郭宗益等,與電磁場相關疾病之其他致病因子危險性分析探討,中華民國公共衛生學會,民國八十五年三月。
    [9]葛維忠,台灣高壓輸電線兩側居民電頻磁場暴露健康風險推估,碩士論文,國立陽明大學,民國九十二年。
    [10]World Health Organization (WHO), Electromagnetic fields (EMF) Research agenda, http://www.who.int/peh-emf/research/agenda/en .
    [11]行政院環保署網站,非屬原子能游離輻射管制網,http://ivy3.epa.gov.tw/NonIonized_Net/EME/safety.aspx 。
    [12]阮江軍、夏斐、陳志楠、鐘亞,30年的工頻磁場生物效應研究—沒有定論,高電壓技術,中國,Vol. 25, No. 2, 1999.
    [13]World Health Organization International Agency for Research on Cancer, “Volume 80, Non-Ionizing Radiation, Part 1: Static and Extremely Low-Frequency (ELF) Electric and Magnetic Fields, Summary of Data Reported and Evaluation,” IARC Monographs, 7 March 2002.
    [14]International Agency for Research on Cancer (IARC), “Complete List of Agents evaluated and their classification,” 30 March 2007, http://monographs.iarc.fr/ENG/Classification/.
    [15]Environment & Society Working Group, “EMF Exposure Standards Applicable in Europe and Elsewhere,” Union of the Electricity Idustry – EURELECTRIC, May 2003.
    [16]惠建峰,關志成,劉瑛岩,各國工頻電磁場的限值及其確定的依據,高電壓技術,中國,Vol. 32, No. 4, pp. 51-64, April 1999.
    [17]International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz),” Health Physics, Vol. 74, No. 4, pp. 494-522, 1998.
    [18]The Council of the European Union, “Council recommendation of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0~300 GHz),” Official Journal of the European Communities, Vol. 30, No. 7, pp. 59-70, 1999.
    [19]The European Parliament and The Council of the European Union, “Directive 2004/40/EC of the European parliament and of the council of 29 April 2004 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields) (18th individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC),” Official Journal of the European Union, L184, Vol. 24, No.5, pp. 1-9, 2004.
    [20]American Conference of Governmental Industrial Hygienists (ACGIH), “Documentation of the Threshold Limit Values and Biological Exposure indices,” 2007.
    [21]IEEE Standards C95.6TM, “IEEE Standard for Safety Levels with Respect to Human Exposure to Electromagnetic Fields, 0-3 kHz,” IEEE Standards Coordinating Committee 28, October 2002.
    [22]National Radiological Protection Board (NRPB), “Restrictions on Human Exposure to Static and Time-Varying Electromagnetic Fields and Radiation: Scientific basis and recommendations for the implementation of the board’s statement,” Documents of the NRPB, Vol. 4, No. 5, pp. 7-63, 1993.
    [23]National Radiological Protection Board (NRPB), “Advice on limiting exposure to electromagnetic fields (0~300 GHz),” Documents of the NRPB, Vol. 15, No. 2, pp. 5-35, 2004.

    [24]Australian Radiation Laboratory on behalf of the National Health and Medical Research Council, “Interim guidelines on limits of exposure to 50/60 Hz electric and magnetic fields,” Radiation Health Series No.30, December 1989.
    [25]Statutory Rules 1999 No.1, “Australian radiation protection and nuclear safety regulations 1999,” 1999.
    [26]D. K. Chen, “Field and Wave Electromagnetics,” Addison Wesley Publishing Company, Inc, Second Edition, 1989.
    [27]R. G. Olsen and P. S. Wong, “Characteristics of low frequency electric and magnetic fields in the vicinity of electric power lines,” IEEE Transactions on Power Delivery, Vol. 7, No. 4, pp. 2046-2055, October 1992.
    [28]吳啟瑞、王珠麗等,電業之變電設施磁場分析之研究完成報告,臺灣電力公司九十二年度研究計畫,民國九十四年六月。
    [29]劉佳益,電力頻率磁場屏蔽分析,碩士論文,國立台灣科技大學,民國九十二年。
    [30]黃昌圳,有限元素法在電機工程的應用,全華科技圖書股份有限公司出版,民國九十四年十月。
    [31]P. Silvester and M. V. K. Chari, “Finite Element Solution of Saturable Magnetic Field Problem,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-89, No. 7, pp. 1642-1651, September/October 1970.
    [32]G. I. Costache, “Finite Element Method Applied to Skin-Effect Problems in Strip Transmission Lines,” IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-35, No. 11, November 1987.
    [33]J. L. Coulomb, Y. Du Terrail, and G. Meunier, “Flux3D, a Finite Element Package for Magnetic Computation,” IEEE Transactions on Magnetics, Vol. MAG-21, No. 6, pp.2499-2502, November 1985.
    [34]G. Meunier, J. C. Sabonnadiere, and J. L. Coulomb, “The Finite Element Post-Processor of Flux3D,” IEEE Transactions on Magnetics, Vol. 27, No. 5, pp.3786-3791, September 1991.
    [35]CEDRAT, FLUX3D® Version 3.20 User’s Guide, December 2000.
    [36]臺灣電力公司,輸電系統規劃準則,民國94年10月14日。
    [37]M. D’Amore, E. Menghi, and M. S. Sarto, “Shielding techniques of the low-frequency magnetic field from cable power lines,” Electromagnetic Compatibility, 2003 IEEE International Symposium, Vol. 1, pp. 203-208, 18-22 August 2003.
    [38]楊成發、楊金石等,輸電地下電纜多回線管路共設時之送電容量研究完成報告,臺灣電力公司九十二年度研究計畫,民國九十三年三月。
    [39]IEEE Std 644-1994 (Revision of IEEE Std 644-1987), “IEEE Standard Procedures for Measurement of Power Frequency Electric and Magnetic Fields From AC Power Lines,” 7 March 1995.
    [40]M. M. Dawoud, I. O. Habiballah, A. S. Farag, and A. Firoz, “Magnetic field management techniques in transmission underground cables,” Electric Power Systems Research, Vol. 48, No. 3, pp.177-192, 1 January 1999.
    [41]A. S. Farag, M. M. Dawoud, and I. O. Habiballah, “Implementation of shielding principles for magnetic field management of power cables,” Electric Power Systems Research, Vol. 48, pp.193-209, 1 January 1999.
    [42]L. Hasselgren and J. Luomi, “Geometrical Aspects of Magnetic Shielding at Extremely Low Frequencies,” IEEE Transactions on Electromagnetic Compatibility, Vol.37, No.3, pp. 409-420, August 1995.
    [43]R. G. Olsen and P. Moreno, “Some Observations About Shielding Extremely Low-Frequency Magnetic Fields by Finite Width Shields,” IEEE Transactions on Electromagnetic Compatibility, Vol. 38, No.3, pp. 460-468, August 1996.
    [44]O. Bottauscio, D. Chiarabaglio and M. Zucca, “Some Considerations about Low Frequency Magnetic Field Shielding,” 8th International IGTE Symposium 1998.
    [45]Y. Du, T. C. Cheng and A. S. Farag, “Principles of Power-Frequency Magnetic Field Shielding with Flat Sheets in a Source of Long Conductors,” IEEE Transactions on Electromagnetic Compatibility, Vol. 38, No 3, pp. 450-459, August 1996.
    [46]P. Moreno and R. G. Olsen, “A Simple Theory for Optimizing Finite Width ELF Magnetic Field Shields for Minimum Dependence on Source Orientation,” IEEE Transactions on Electromagnetic Compatibility, Vol. 39, No 4, pp. 340-348, November 1997.
    [47]W. M. Frix and G. G. Karaday, “A Circuital Approach to Estimate the Magnetic Field Reduction of Nonferrous Metal Shield”, IEEE Transaction on Electromagnetic Compatibility, Vol. 39, No. 1, pp. 24-32, February 1997.
    [48]B. A. Clairmont and R. J. Lordan, “3-D Modeling of Thin Conductive Sheets for Magnetic Field Shielding: Calculations and Measurements,” IEEE Transactions on Power Delivery, Vol. 14, No. 4, pp. 1382-1393, October 1999.
    [49]L. Sandrolini, A. Massarini, and U. Reggiani, “Transform Method for Calculating Low-Frequency Shielding Effectiveness of Plannar Linear Multilayered Shields,” IEEE Transctions on Magnetics, Vol. 36, pp. 3910-3919, November 2000.
    [50]A. Canova, A. Manzin, and M. Tartaglia, “Evaluation of Different Analytical and Semi-Analytical Methods for the Design of ELF Magnetic Field Shields,” IEEE Transactions on Industry Applications, Vol. 38, No. 3, pp. 788-796, May/June 2002.
    [51]S. Kong, Y. P. Du, and J. Bunnett, “Experiment on finite-width planar sheets for ELF magnetic field shielding,” 1999 International Symposium on Electromagnetic Compatibility, Tokyo, Japan, pp. 524-527, 17-21 May 1999.
    [52]吳裕慶,金屬材料學,大中國圖書公司印行,民國六十六年。
    [53]鄭振東,實用磁性材料,全華科技圖書股份有限公司印行,民國八十八年。
    [54]吳啟瑞、楊成發,台灣銀行總行西大樓高壓變電站電力頻率磁場改善研究計畫評估案,國立台灣科技大學,民國九十年七月。
    [55]張洪樑,地下電纜線路電力頻率磁場分析與改善,國立台灣科技大學碩士論文,民國九十五年六月。
    [56]M. D’Amore, D. Paladino, M.S. Sarto, “New Double-Shielded Power Cables Generating Low Magnetic Field Levels,” Electromagnetic Compatibility, Vol. 1, pp. 179-184, 8-12 August 2005.

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE