簡易檢索 / 詳目顯示

研究生: 潘湖平
Hu-Ping Pan
論文名稱: 應用於無線網路感測之收發器平台系統設計與電路實現
The System Design and Circuit Implementation of a Transceiver Platform for Wi-Fi Sensing Applications
指導教授: 沈中安
Chung-An Shen
口試委員: 沈中安
Chung-An Shen
黃琴雅
CHIN-YA HUANG
吳晉賢
Chin-Hsien Wu
林昌鴻
Chang Hong Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 51
中文關鍵詞: Wi-FiWi-Fi感測平台CSI天線擴充
外文關鍵詞: Wi-Fi, Wi-Fi sensing platform, CSI, antenna expansion
相關次數: 點閱:279下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Wi-Fi高吞吐量(throughput)且易部署的優點使其快速的發展,且常使用於無線區域網路(Wireless LAN, WLAN)中,但Wi-Fi除了通訊外,其實也可以基於不同的目的進行感測,例如手勢偵測、跌倒偵測、呼吸監測、室內定位等。Wi-Fi感測作為一項新穎的技術而吸引大家的關注,主要是利用Wi-Fi設備的通道狀態資訊(Channel State Information, CSI)來分析環境中的變化,進而達到感測的功能。目前市面上可以獲取CSI的工具中,大部分都為商用現貨(Commercial Off-The-Shelf, COTS)的設備,例如Intel 5300網路卡或Atheros Wi-Fi網路卡。Wi-Fi感測除了最重要的CSI之外,還需要其他實體層(Physical Layer, PHY layer)的資訊進行輔助,使感測結果更加準確,例如頻率偏移(frequency offset)、接收訊號強度(Received Signal Strength Indication, RSSI)、自動增益控制(Automatic Gain Control, AGC)等資訊。而商用設備並未提供這些資訊,也無法依照使用者需求進行修改。因此,本論文將設計一個適合應用於Wi-Fi感測的平台,解決了CSI相關資訊不足的問題,並且提供SIMO系統及天線擴充的功能。本論文以系統模組(System On Module, SOM)進行開發驗證,同時具備高效能且靈活的特性,更可以讓使用者依照自己的需求重新設計或開發新功能。


    Wi-Fi networks are rapidly growing and are often used in Wireless LAN (WLAN) because of the advantages of high throughput and easy deployment. However, in addition to communication, Wi-Fi can also be used for different purposes of sensing, such as gesture recognition, fall detection, breathing monitoring, indoor localization, etc. Wi-Fi sensing attracts attention as an emerging technology. The principle of Wi-Fi sensing is to use the channel state information (CSI) of Wi-Fi devices to analyze the changes in the environment to achieve the sensing function. Currently, most of the tools available in the market to obtain CSI are Commercial Off-The-Shelf (COTS) devices, such as the Intel 5300 network interface card (NIC) or the Atheros Wi-Fi NICs. In addition to the most important CSI, Wi-Fi sensing also needs other physical layer information to make the sensing results more accurate, such as frequency offset, received signal strength indication (RSSI), automatic gain control (AGC) and other information. Commercial equipment does not provide this information and cannot be modified according to user needs. In this paper, we design a suitable platform for Wi-Fi sensing to solve the problem of insufficient CSI related information, and provide SIMO system and antenna expansion functions. This paper uses System-On-Module (SOM) for development and verification, which is high performance and flexible and allows users to redesign or develop new functions according to their needs.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章 序論 1 1.1 研究動機與目的 1 1.2 論文架構 3 第二章 相關理論與研究 4 2.1 IEEE 802.11中的OFDM 4 2.2 通道狀態資訊(Channel State Information, CSI) 6 2.3 Wi-Fi感測 7 2.4 Wi-Fi感測平台 8 2.5 openwifi 10 第三章 系統架構 12 3.1 系統需求 12 3.2 總覽 13 3.2.1 AD9361架構 14 3.2.2 精確時間協議(Precision Time Protocol, PTP) 15 第四章 軟硬體設計與實現 17 4.1 擷取足夠支援Wi-Fi感測的CSI相關資訊 17 4.2 單輸入多輸出系統(SIMO) 24 4.3 天線擴充 27 第五章 實驗與結果 30 5.1 擷取足夠支援Wi-Fi感測的CSI相關資訊測試 30 5.1.1 實驗環境 30 5.1.2 實驗結果 31 5.2 單輸入多輸出系統(SIMO) 測試 33 5.2.1 實驗環境 33 5.2.2 實驗結果 34 5.3 天線擴充測試 35 5.3.1 實驗環境 35 5.3.2 實驗結果 36 5.4 AOA(Angle of Arrival)演算法測試 38 5.4.1 實驗環境 38 5.4.2 實驗結果 38 第六章 結論 40 第七章 參考文獻 41

    [1] "IEEE Standard for Information technology—Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications," in IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012) , vol., no., pp.1-3534, 14 Dec. 2016.
    [2] J. Xiao, K. Wu, Y. Yi and L. M. Ni, "FIFS: Fine-Grained Indoor Fingerprinting System," 2012 21st International Conference on Computer Communications and Networks (ICCCN), pp. 1-7, 2012.
    [3] D. Halperin, W. Hu, A. Sheth and D. Wetherall, "Tool release: Gathering 802.11 n traces with channel state information", ACM SIGCOMM Comput. Commun. Review, vol. 41, no. 1, pp. 53-53, 2011.
    [4] Y. Xie, Z. Li and M. Li, "Precise Power Delay Profiling with Commodity Wi-Fi," in IEEE Transactions on Mobile Computing, vol. 18, no. 6, pp. 1342-1355, 1 June 2019.
    [5] Y. Zhuo, H. Zhu and H. Xue, "Identifying a new non-linear CSI phase measurement error with commodity WiFi devices", Proc. IEEE Int. Conf. Parallel Distrib. Syst., pp. 72-79, Dec. 13–16, 2016.
    [6] X. Jiao, W. Liu, M. Mehari, M. Aslam and I. Moerman, "openwifi: a free and open-source IEEE802.11 SDR implementation on SoC," 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), pp. 1-2 2020.
    [7] Y. Ma, G. Zhou and S. Wang, "WiFi sensing with channel state information: A survey", ACM Computing Surveys (CSUR), pp. 1-36, Jul. 2019.
    [8] S. Palipana, D. Rojas, P. Agrawal and D. Pesch, "FallDeFi: Ubiquitous fall detection using commodity Wi-Fi devices", Proc. ACM Interact. Mobile Wearable Ubiquitous Technol., vol. 1, no. 4, pp. 155, 2018.
    [9] Y. Xu, W. Yang, J. Wang, X. Zhou, H. Li and L. Huang, "WiStep: Device-free step counting with WiFi signals", Proc. ACM Interact. Mobile Wearable Ubiquitous Technol., vol. 1, no. 4, pp. 1-23, Jan. 2018.
    [10] Q. Pu, S. Gupta, S. Gollakota and S. Patel, "Whole-home gesture recognition using wireless signals", Proceedings of the 19th annual international conference on Mobile computing & networking, pp. 27-38, 2013.
    [11] S. Tan and J. Yang, "WiFinger: Leveraging commodity WiFi for fine-grained finger gesture recognition", Proc. 17th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., pp. 201-210, 2016.
    [12] M. Kotaru, K. Joshi, D. Bharadia and S. Katti, "SpotFi: Decimeter level localization using WiFi", Proc. ACM SIGCOMM Comput. Commun. Rev., vol. 45, pp. 269-282, 2015.
    [13] X. Liu et al., "Contactless Respiration Monitoring via Off-the-shelf WiFi Devices", IEEE TMC, vol. 15, no. 10, pp. 2466-79, 2016.
    [14] X. Wang, C. Yang and S. Mao, "PhaseBeat: Exploiting CSI phase data for vital sign monitoring with commodity WiFi devices", Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst., pp. 1230-1239, Jun. 2017.
    [15] Analog Devices, "ADRV9361-Z7035 User Guide - Electrical Specifications" Feb 2022, [Online]. Available: https://wiki.analog.com/resources/eval/user-guides/adrv9361-z7035/electrical-specifications. [Accessed 2022]
    [16] Analog Devices, "AD9361: RF Agile Transceiver Data Sheet" Nov 2016, [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/AD9361.pdf. [Accessed 2022]
    [17] Xilinx, " Zynq-7000 SoC Data Sheet: Overview" Jul 2018, [Online]. Available: https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf. [Accessed 2022]
    [18] "IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems," in IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002) , vol., no., pp.1-269, 24 July 2008.
    [19] P. Pandey, B. Pratap and R. S. Pandey, "Analysis and Design of Precision Time Protocol System Based on IEEE1588 Standards," 2019 International Conference on Communication and Electronics Systems (ICCES), pp. 1963-1967, 2019.
    [20] R. Cochran et al., The linux ptp project, 2015, [online] Available : http://linuxptp.sourceforge.net.

    無法下載圖示 全文公開日期 2025/06/02 (校內網路)
    全文公開日期 2027/06/02 (校外網路)
    全文公開日期 2027/06/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE