簡易檢索 / 詳目顯示

研究生: 陳昱夆
Yu-Feng, Chen
論文名稱: 具互補式反射與透射特性之可重置頻率選擇表面設計
Reconfigurable Frequency Selective Surface Designs with Complementary Reflection and Transmission Characteristics
指導教授: 廖文照
Wen-Jiao Liao
口試委員: 馬自莊
Tzyh-Ghuang Ma
林丁丙
Ding-Bing Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 74
中文關鍵詞: 可重置頻率選擇表面雷達反射截面積雷達罩射頻二極體對偶定理
外文關鍵詞: Reconfigurable frequency selective surface, radar cross section, radomes, RF diodes, duality theorem
相關次數: 點閱:281下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出一款新穎的帶通/帶拒可重置頻率選擇表面設計,該頻率選擇表面的操作特性是建立在對偶定理上,使用井字作為週期性結構單元,藉由將蕭特基二極體安裝在相鄰井字的末端,使井字型單元可以透過偏壓狀態切換成槽孔單元。因井字型單元和槽孔單元具有互補特性,故可於相同的頻率下分別產生帶拒和帶通的效果。也就是說,當二極體工作於逆偏時,井字型單元呈現帶拒效果,當二極體工作於順偏時,槽孔單元呈現帶通效果。因井字型單元與槽孔單元皆為十字形之幾何結構,故效能表現不太會受到入射訊號極化方向的影響。井字型單元除了提供互補式架構外,也作為二極體之偏壓網路,不需額外製作偏壓線。除此之外,本架構只需利用一外加偏壓即可控制頻率選擇表面的帶通/帶拒切換效果。本研究進行的量測頻率選擇表面面板之近場特性評估、遠場雷達反射截面積量測與透射率量測,經由信號處理,可將量測結果與模擬結果進行比較。量測結果發現若在模擬架構上帶入蕭特基二極體之等效電路,可得出與實作量測相符的模擬結果,驗證在考量二極體等效電路的情況下,以電磁模擬設計頻率選擇表面的可行性。本架構可應用於雷達罩和天線上,藉由可切換的帶通/帶拒特性,達到多樣化的性能表現。


Novel reconfigurable FSS designs that come with inverted reflection and transmission bands are developed in this thesis. According to the duality theorem, complementary periodic structures made of similar wire and slot elements shall yield opposite scattering responses. This is facilitated by placing diodes between tips of proposed #-shaped wire elements, which form a band stop type FSS. By providing forward bias, connected elements are transformed into a slot array, which generates inverted pass and stop bands near the designated resonant frequency. The proposed periodic structure comprises one layer of microstrip lines laid on a thin printed circuit board. The #-shaped elements also act as the biasing network for serially connected diodes. Only one bias voltage is needed to control the FSS transmission condition. Range setups and signal processing techniques are devised so that simulated results of infinite FSS can be compared with measured results of finite size panels. By considering the diode’s equivalent circuits in simulation models, good agreements with prototype measurement results are observed. The complementary reflection and transmission characteristic can be forwarded to advanced radome and antenna designs to achieve more versatile performance features.

摘要 I Abstract III 目錄 V 圖目錄 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 論文組織 11 第二章 可重置頻率選擇表面單元設計 12 2.1 前言 12 2.2 概念性驗證之初始單元設計 13 2.3 可實作之細分支單元設計 17 2.4 設計參數分析 24 2.4.1週期性單元模態分析 24 2.4.2 重要設計參數分析 28 2.4.3 微調參數分析 32 2.4.4 極化方向分析 39 2.5 可重置頻率選擇表面面板設計 41 第三章 效能驗證 44 3.1 前言 44 3.2 FSS面板近場反射特性量測 46 3.3 FSS面板雷達反射截面積量測 49 3.3.1量測系統架構 49 3.3.2量測結果 52 3.4 FSS面板透射特性量測 55 3.4.1 量測架設 55 3.4.2 量測結果 58 3.5 精準FSS單元特性模擬結果與比較 59 第四章 互補式帶通帶拒頻率選擇表面設計 61 4.1 單元設計 61 4.2 實作面板設計 65 4.3 效能驗證 67 第五章 結論 70 參考文獻 72

[1] B. A. Munk, Frequency Selective Surfaces: Theory and Design. New York, NY, USA: Wiley-Interscience, 2000.
[2] K. Katoch, N. Jaglan, and S. D. Gupta, "A review on frequency selective surfaces and its applications," 2019 International Conference on Signal Processing and Communication (ICSC), 7 – 9 Mar. 2019, Noida, India, pp. 75-81.
[3] J. Chen, Y. Shimprovedang and C. Liao, "Double-Layer Circuit Analog Absorbers Based on Resistor-Loaded Square-Loop Arrays," IEEE Antennas and Wireless Propag. Lett., vol. 17, no. 4, pp. 591-595, April 2018
[4] A. Pitilakis et al., "A multi-functional reconfigurable metasurface: electromagnetic design accounting for fabrication aspects," IEEE Trans. Antennas Propag., vol. 69, no. 3, pp. 1440-1454, Mar. 2021.
[5] G. I. Kiani, K. L. Ford, L. G. Olsson, K. P. Esselle, and C. J. Panagamuwa, "Switchable frequency selective surface for reconfigurable electromagnetic architecture of buildings," IEEE Trans. Antennas Propag., vol. 58, no. 2, pp. 581-584, Feb. 2010.
[6] C. Mias, "Varactor-tunable frequency selective surface with resistive-lumped-element biasing grids," IEEE Microw. Wireless Compon. Lett., vol. 15, no. 9, pp. 570-572, Sep. 2005.
[7] X. G. Huang, Z. Shen, Q. Y. Feng, and B. Li, "Tunable 3-D bandpass frequency-selective structure with wide tuning range," IEEE Trans. Antennas Propag., vol. 63, no. 7, pp. 3297-3301, Jul. 2015.
[8] S. Ghosh and K. V. Srivastava, "Broadband polarization-insensitive tunable frequency selective surface for wideband shielding," IEEE Trans. Electromagn. Compat., vol. 60, no. 1, pp. 166-172, Feb. 2018.
[9] B. Sanz-Izquierdo, E. A. Parker, and J. C. Batchelor, "Dual-band tunable screen using complementary split ring resonators," IEEE Trans. Antennas Propag., vol. 58, no. 11, pp. 3761-3765, Nov. 2010.
[10] H. Li, Q. Cao, L. Liu, and Y. Wang, "An improved multifunctional active frequency selective surface," IEEE Trans. Antennas Propag., vol. 66, no. 4, pp. 1854-1862, Apr. 2018.
[11] A. Tennant and B. Chambers, "A single-layer tuneable microwave absorber using an active FSS," IEEE Microw. Wireless Compon. Lett., vol. 14, no. 1, pp. 46-47, Jan. 2004.
[12] S. C. Bakshi, D. Mitra, and S. Ghosh, "A frequency selective surface based reconfigurable rasorber with switchable transmission/reflection band," IEEE Antennas Wireless Propag. Lett., vol. 18, no. 1, pp. 29-33, Jan. 2019.
[13] S. C. Bakshi, D. Mitra, and F. L. Teixeira, "FSS-based fully reconfigurable rasorber with enhanced absorption bandwidth and simplified bias network," IEEE Trans. Antennas Propag., vol. 68, no. 11, pp. 7370-7381, Nov. 2020.
[14] S. C. Bakshi, D. Mitra, and F. L. Teixeira, "Wide-angle broadband rasorber for switchable and conformal application," IEEE Trans. Microw. Theory Techn., vol. 69, no. 2, pp. 1205-1216, Feb. 2021.
[15] R. Sivasamy, B. Moorthy, M. Kanagasabai, V. R. Samsingh, and M. G. N. Alsath, "A wideband frequency tunable FSS for electromagnetic shielding applications," IEEE Trans. Electromagn. Compat., vol. 60, no. 1, pp. 280-283, Feb. 2018.
[16] S. A. B, E. F. Sundarsingh, and V. S. Ramalingam, "Mechanically reconfigurable frequency selective surface for RF shielding in indoor wireless environment," IEEE Trans. Electromagn. Compat., vol. 62, no. 6, pp. 2643-2646, Dec. 2020.
[17] S. N. Azemi, K. Ghorbani and W. S. T. Rowe, "A reconfigurable FSS using a spring resonator element," IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 781-784, 2013.
[18] H. L. Zhu, X. H. Liu, S. W. Cheung, and T. I. Yuk, "frequency-reconfigurable antenna using metasurface," IEEE Trans. Antennas Propag., vol. 62, no. 1, pp. 80-85, Jan. 2014.
[19] K. Kandasamy, B. Majumder, J. Mukherjee, and K. P. Ray, "Low-RCS and polarization-reconfigurable antenna using cross-slot-based metasurface," IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1638-1641, 2015.
[20] C. Ni, M. S. Chen, Z. X. Zhang, and X. L. Wu, "Design of frequency-and polarization-reconfigurable antenna based on the polarization conversion metasurface," IEEE Antennas Wireless Propag. Lett., vol. 17, no. 1, pp. 78-81, Jan. 2018.
[21] S. Ghosh and S. Lim, "Fluidically reconfigurable multifunctional frequency-selective surface with miniaturization characteristic," IEEE Trans. Microw. Theory Techn., vol. 66, no. 8, pp. 3857-3865, Aug. 2018.
[22] A. Edalati and T. A. Denidni, "High-gain reconfigurable sectoral antenna using an active cylindrical FSS structure," IEEE Trans. Antennas Propag., vol. 59, no. 7, pp. 2464-2472, Jul. 2011.
[23] L. Han, G. Cheng, G. Han, R. Ma, and W. Zhang, "Electronically beam-steering antenna with active frequency-selective surface," IEEE Antennas Wireless Propag. Lett., vol. 18, no. 1, pp. 108-112, Jan. 2019.
[24] W. Li, Y. Wang, S. Sun, and X. Shi, "An FSS-backed reflection/transmission reconfigurable array antenna," IEEE Access, vol. 8, pp. 23904-23911, Jan. 2020.
[25] A. Edalati and T. A. Denidni, "Frequency selective surfaces for beam-switching applications," IEEE Trans. Antennas Propag., vol. 61, no. 1, pp. 195-200, Jan. 2013.
[26] M. Bouslama, M. Traii, T. A. Denidni, and A. Gharsallah, "Beam-switching antenna with a new reconfigurable frequency selective surface," IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 1159-1162, 2016.
[27] L. Ji, Z. Zhang, and N. Liu, "A two-dimensional beam-steering partially reflective surface (PRS) antenna using a reconfigurable FSS structure," IEEE Antennas Wireless Propag. Lett., vol. 18, no. 6, pp. 1076-1080, Jun. 2019.
[28] Z. Wu, H. Liu, and L. Li, "Metasurface-inspired low profile polarization reconfigurable antenna with simple DC controlling circuit," IEEE Access, vol. 7, pp. 45073-45079, 2019.
[29] H. Li et al., "Reconfigurable Fresnel lens based on an active second-order bandpass frequency-selective surface," IEEE Trans. Antennas Propag., vol. 68, no. 5, pp. 4054-4059, May 2020.
[30] 蔡晉哲, 波束可重置天線陣列設計與雷達反射截面積增強結構開發, 國立臺灣科技大學電機工程所, 碩士論文, 民國105年

QR CODE