簡易檢索 / 詳目顯示

研究生: 賴姵伃
Pei-Yu Lai
論文名稱: 光可調性Ag/Mn:In2S3/ZnS量子點合成與其螢光與核磁共振之雙重生醫顯影應用
Synthesis of color tunable Ag/Mn:In2S3/ZnS quantum dots for dual modality fluorescence and magnetic resonance imaging
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 何郡軒
Jinn-Hsuan Ho
黃志清
Chih-Ching Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 114
中文關鍵詞: 摻雜量子點微波輔助合成螢光顯影核磁共振攝影
外文關鍵詞: Doping quantum dot, microwave-assisted synthesis, fluorescence imaging, magnetic resonance imaging
相關次數: 點閱:291下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文結合了奈米合成技術與生物醫學應用,將低毒性之量子點應用於細胞及生物活體上,成功開發出具有低成本且合成時間短、高量子效率、低毒性、螢光顯影標靶、核磁共振之多功能量子點材料。
第一部分:以水為溶劑,使用微波輔助法成功地直接合成出水溶性Ag+、Mn2+離子共摻雜In2S3量子點 (簡稱Ag/Mn:In2S3)。藉由優化前驅物比例以改善材料缺陷性質,並使用雙穩定劑L-glutathione與Citric acid trisodium salt讓量子點能夠在水中穩定地合成。後續再將此量子點以無機材料ZnS包覆而形成Ag/Mn:In2S3/ZnS核殼型量子點,具備45.24%螢光量子產率。最後利用TEM、XRD、UV、PL、EPR、ICP、FTIR及Life time來進行摻雜量子點的組成、結構、光學性質與磁性分析。結果發現Mn2+離子螯合於In2S3量子點之中使其展現出順磁特性; 而Ag+離子摻雜In2S3量子點改變其光學能隙值,使量子點具有可調性放光波長特性 (472 nm~743 nm, 綠光至近紅外光)。
第二部分:為增添其生醫應用性,利用EDC/Sulfo-NHS共價交聯反應將Ag/Mn:In2S3/ZnS量子點表面修飾玻尿酸(hyaluronic acid, HA),使此量子點具有專一性標靶的功能,能夠針對特定的癌細胞進行有效的顯影以及追蹤。癌細胞和生物活體的斑馬魚毒性實驗,也證明Ag/Mn:In2S3/ZnS量子點表面功能化後,依舊為無毒奈米生醫材料。在細胞影像中,證明Ag/Mn:In2S3/ZnS@HA量子點兼具螢光標靶顯影與核磁共振標靶顯影之雙重顯影效果。


We present a facile microwave-assisted method successfully direct synthesis of water-soluble Ag+ and Mn2+ co-doped In2S3 quantum dots (Ag/Mn:In2S3 QDs) with glutathione (GSH) and citric acid trisodium salt (SC) as the dual stabilizing agents. ZnS semiconducting material was designed to passivate on the surface of Ag/Mn:In2S3, leading to the formation of Ag/Mn:In2S3/ZnS core/shell QDs with quantum yields up to 45.24%. The as-prepared Ag/Mn:In2S3/ZnS QDs exhibited small particle sizes (~2.5 nm), long photoluminescence lifetime, and color-tunable properties ranging from 472 to 743 nm by tailoring the stoichiometric ratio of [Ag]/[In].
To demonstrate their potential biomedical application, hyaluronic acid (HA) was used to conjugate with Ag/Mn:In2S3/ZnS core/shell QDs using EDC/Sulfo-NHS chemistry. Confocal imaging characterization revealed that functionalized Ag/Mn:In2S3/ZnS@HA QDs could be specifically targeting and effectively uptaked by B16F1 cells. In vivo imaging confirmed that Ag/Mn:In2S3/ZnS@HA QDs could be a dual-modal magnetic resonance and fluorescence imaging. Finally, zebrafish experiments also proved that Ag/Mn:In2S3/ZnS@HA QDs remains non-toxic features after surface functionalization.

摘要 Abstract 總目錄 表目錄 圖目錄 第一章、緒論 1.1前言 1.2研究動機與內容 第二章、文獻回顧 2.1奈米半導體材料之光學特性與理論 2.1.1奈米半導體材料基本特性 2.1.2量子尺寸效應 2.1.3表面效應 2.1.4奈米晶體之能隙 2.1.5量子侷限效應 2.2量子點發展與應用 2.2.1水相量子點發展與文獻回顧 2.2.2水相量子點合成方法 2.2.3 In2S3量子點介紹與文獻回顧 2.2.4摻雜量子點介紹與文獻回顧 2.2.5摻雜量子點的合成方法與機制 2.3磁性量子點介紹與應用 2.3.1稀磁半導體介紹 2.3.2錳原子摻雜於量子點的介紹 2.3.3電子順磁共振光譜儀(EPR)鑑定Mn摻雜的量子點 2.3.4 Mn摻雜量子點具有螢光顯影及核磁共振影像(MRI)介紹與文獻回顧 第三章、實驗方法與原理 3.1實驗藥品 3.2實驗測量 3.3實驗步驟 3.3.1 Ag, Mn共摻雜於In2S3水相量子點合成 3.3.2硫化鋅(ZnS)母液的製備 3.3.3 Ag/Mn:In2S3/ZnS水相量子點合成 3.3.4 Ag/Mn:In2S3/ZnS水相量子點與玻尿酸鍵結之合成 3.4細胞培養與細胞實驗 3.4.1培養液(medium)與PBS之配製 3.4.2 解凍細胞(Cells Defrost) 3.4.3繼代培養(Cell Culture) 3.4.4細胞計數(Cell Counting) 3.4.5冷凍細胞(Cell Cryopreservation) 3.4.6 Ag/Mn:In2S3/ZnS@HA量子點於細胞之螢光顯影試片製作 3.4.7 Ag/Mn:In2S3/ZnS@HA量子點於細胞之MRI試片製作 3.4.8 Ag/Mn:In2S3/ZnS@HA量子點對於細胞之體外毒性測試 3.5 Ag/Mn:In2S3/ZnS@HA量子點對於斑馬魚之體內毒性測試 第四章、實驗結果與討論 4.1 Ag/Mn:In2S3水相量子點合成介紹 4.1.1 Ag/Mn:In2S3水相量子點於不同時間下之量子產最佳化率探討 4.1.2 Ag/Mn:In2S3水相量子點摻雜不同Ag+離子濃度之量子產率最佳化探討 4.1.3 Ag/Mn:In2S3水相量子點摻雜不同Mn2+離子濃度之光學性質鑑定 4.2 Ag/Mn:In2S3/ZnS核層–殼層水相量子點合成與製備 4.2.1 Ag/Mn:In2S3/ZnS水相量子點實驗設計 4.2.2 Ag/Mn:In2S3/ZnS水相量子點之殼層量子產率最佳化探討 4.2.3 Ag/Mn:In2S3/ZnS水相量子點之之型態與結構分析 4.2.4 Ag/Mn:In2S3/ZnS水相量子點之光學分析與穩定性測試 4.3 Ag/Mn:In2S3/ZnS殼核結構水相量子點之光學性質、磁性探討 4.3.1 Ag/Mn:In2S3/ZnS水相量子點EPR光譜鑑定 4.3.2 Ag/Mn:In2S3/ZnS水相量子點之核磁共振分析 4.4 Ag/Mn:In2S3/ZnS水相量子點表面功能化之修飾介紹 4.4.1 Ag/Mn:In2S3/ZnS水相量子點與玻尿酸(HA)之耦合與介紹 4.4.2 Ag/Mn:In2S3/ZnS@HA水相量子點之功能化合成之鑑定分析 4.5 Ag/Mn:In2S3/ZnS@HA水相量子點於生物顯影應用 4.5.1 Ag/Mn:In2S3/ZnS@HA水相量子點對於細胞之體外毒性測試 4.5.2 Ag/Mn:In2S3/ZnS@HA水相量子點對於斑馬魚之體內毒性測試 4.5.3 Ag/Mn:In2S3/ZnS@HA水相量子點於癌細胞之生物顯影應用 4.5.4 Ag/Mn:In2S3/ZnS@HA水相量子於核磁共振顯影應用 第五章、結論與未來展望 參考文獻

1. 汪信、劉孝恒, 100年11月初版,
2. 馬振基, 奈米材料科技原理與應用. 2012[民101], 新北市土城區 : 全華.
3. 高逢時, 2005年2月,386期,
4. 羅吉宗, 奈米科技導論. [臺北縣土城市] : 全華.
5. Sun, G., 2010, 255.
6. Alivisatos, A.P., Science, 1996, 271, 933.
7. Wiedwald, U. and P. Ziemann, Beilstein J. Nanotechnol., 2010, 1, 21.
8. Chen, O., H. Wei, A. Maurice, M. Bawendi, and P. Reiss, MRS Bull., 2013, 38, 696.
9. Rossetti, R., S. Nakahara, and L. Brus, J. Phys. Chem., 1983, 79, 1086.
10. Murray, C., D.J. Norris, and M.G. Bawendi, J. Am. Chem. Soc., 1993, 115, 8706.
11. Mews, A., A. Eychmüller, M. Giersig, D. Schooss, and H. Weller, J. Phys. Chem., 1994, 98, 934.
12. Peng, X., L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A.P. Alivisatos, Nature, 2000, 404, 59.
13. Chan, W.C. and S. Nie, Science, 1998, 281, 2016.
14. Kang, X., L. Huang, Y. Yang, and D. Pan, J. Phys. Chem. C, 2015, 119, 7933.
15. Luo, Z., H. Zhang, J. Huang, and X. Zhong, J. Colloid Interface Sci., 2012, 377, 27.
16. Song, J., T. Jiang, T. Guo, L. Liu, H. Wang, T. Xia, W. Zhang, X. Ye, M. Yang, and L. Zhu, Inorg. Chem., 2015, 54, 1627.
17. Tan, L., S. Liu, X. Li, I.S. Chronakis, and Y. Shen, Colloids Surf., B, 2015, 125, 222.
18. Lesnyak, V., N. Gaponik, and A. Eychmüller, Chem. Soc. Rev., 2013, 42, 2905.
19. Polshettiwar, V. and R.S. Varma, Chem. Soc. Rev., 2008, 37, 1546.
20. Xiong, W.-W., G.-H. Yang, X.-C. Wu, and J.-J. Zhu, ACS Appl. Mater. Interfaces., 2013, 5, 8210.
21. Xiong, W.-W., G.-H. Yang, X.-C. Wu, and J.-J. Zhu, J. Mater. Chem. B, 2013, 1, 4160.
22. Liang, Q., Y. Bai, L. Han, X. Deng, X. Wu, Z. Wang, X. Liu, and J. Meng, J. Lumin., 2013, 143, 185.
23. Liu, Z., G. Li, Q. Ma, L. Liu, and X. Su, Microchimica Acta, 2014, 181, 1385.
24. Regulacio, M.D., K.Y. Win, S.L. Lo, S.-Y. Zhang, X. Zhang, S. Wang, M.-Y. Han, and Y. Zheng, Nanoscale, 2013, 5, 2322.
25. Datta, A., D. Ganguli, and S. Chaudhuri, J. Mater. Res., 2008, 23, 917.
26. Vossmeyer, T., L. Katsikas, M. Giersig, I. Popovic, K. Diesner, A. Chemseddine, A. Eychmüller, and H. Weller, J. Phys. Chem.she8348, 1994, 98, 7665.
27. Zheng, L., Y. Xu, Y. Song, C. Wu, M. Zhang, and Y. Xie, Inorg. Chem., 2009, 48, 4003.
28. Saha, A.K., P. Sharma, H.-B. Sohn, S. Ghosh, R.K. Das, A.F. Hebard, H. Zeng, C. Baligand, G.A. Walter, and B.M. Moudgil, J. Mater. Chem. B, 2013, 1, 6312.
29. Kang, X., Y. Yang, L. Huang, Y. Tao, L. Wang, and D. Pan, Green Chem., 2015, 17, 4482.
30. Zhao, P., J. Zhang, Y. Zhu, X. Yang, X. Jiang, Y. Yuan, C. Liu, and C. Li, J. Mater. Chem. B, 2014, 2, 8372.
31. Lan, G.-Y., Y.-W. Lin, Y.-F. Huang, and H.-T. Chang, J. Mater. Chem., 2007, 17, 2661.
32. Wang, C., H. Zhang, J. Zhang, M. Li, H. Sun, and B. Yang, J. Phys. Chem. C, 2007, 111, 2465.
33. http://www.aandb.com.tw/product_sample/006_go.html.
34. http://www.chemshow.cn/instrument/news_detail/19613.
35. Mahamuni, S., K. Borgohain, B. Bendre, V.J. Leppert, and S.H. Risbud, journal of applied physics, 1999, 85, 2861.
36. Danek, M., K.F. Jensen, C.B. Murray, and M.G. Bawendi, Chem. Mater., 1996, 8, 173.
37. Karczewski, G., S. Maćkowski, M. Kutrowski, T. Wojtowicz, and J. Kossut, Appl. Phys. Lett., 1999, 74, 3011.
38. Bhargava, R., D. Gallagher, X. Hong, and A. Nurmikko, Phys. Rev. Lett., 1994, 72, 416.
39. Ai, Z.P., Opt. Mater., 2003, 24, 589.
40. Avivi, O. Palchik, V. Palchik, M. Slifkin, A. Weiss, and A. Gedanken, Chem. Mater., 2001, 13, 2195.
41. Kamat, P.V., N.M. Dimitrijevic, and R.W. Fessenden, J. Phys. Chem., 1988, 92, 2324.
42. Nagesha, D.K., X. Liang, A.A. Mamedov, G. Gainer, M.A. Eastman, M. Giersig, J.-J. Song, T. Ni, and N.A. Kotov, J. Phys. Chem. B, 2001, 105, 7490.
43. Xiong, Y., Y. Xie, G. Du, X. Tian, and Y. Qian, J. Solid State Chem., 2002, 166, 336.
44. Yasaki, Y., N. Sonoyama, and T. Sakata, J. Electroanal. Chem., 1999, 469, 116.
45. Nishino, T. and Y. Hamakawa, Jpn. J. Appl. Phys.,, 1977, 16, 1291.
46. Afzaal, M., M.A. Malik, and P. O'Brien, Chem. Commun., 2004, 334.
47. Han, W., L. Yi, N. Zhao, A. Tang, M. Gao, and Z. Tang, J. Am. Chem. Soc., 2008, 130, 13152.
48. Barreau, N., J. Bernede, H. El Maliki, S. Marsillac, X. Castel, and J. Pinel, Solid State Commun., 2002, 122, 445.
49. Diehl, R. and R. Nitsche, J. Cryst. Growth, 1975, 28, 306.
50. Womes, M., J. Olivier-Fourcade, J.-C. Jumas, F. Aubertin, and U. Gonser, J. Solid State Chem., 1992, 97, 249.
51. Mathew, M., C.S. Kartha, and K. Vijayakumar, J. Mater. Sci. - Mater. Electron., 2009, 20, 294.
52. Lianos, P. and J.K. Thomas, Chem. Phys. Lett., 1986, 125, 299.
53. Garlick, G., M. Springford, and H. Checinska, Proc. Phys. Soc., 1963, 82, 16.
54. Ho, C., Y. Wang, C. Chan, Y. Huang, and C. Li, Journal of Applied Physics, 2010, 108, 043518.
55. Franzman, M.A. and R.L. Brutchey, Chem. Mater., 2009, 21, 1790.
56. Ning, J., K. Men, G. Xiao, L. Zhao, L. Wang, B. Liu, and B. Zou, J. Colloid Interface Sci., 2010, 347, 172.
57. Feng, J., H. Zhu, and X. Yang, Nanoscale, 2013, 5, 6318.
58. Ogawa, T., T. Kuzuya, Y. Hamanaka, and K. Sumiyama, J. Mater. Chem., 2010, 20, 2226.
59. Feng, Z., P. Dai, X. Ma, J. Zhan, and Z. Lin, Appl. Phys. Lett., 2010, 96, 013104.
60. Deng, D., J. Cao, L. Qu, S. Achilefu, and Y. Gu, Phys. Chem. Chem. Phys., 2013, 15, 5078.
61. Mao, B., C.-H. Chuang, J. Wang, and C. Burda, J. Phys. Chem. C, 2011, 115, 8945.
62. Raevskaya, A.E., M.V. Ivanchenko, O.L. Stroyuk, S.Y. Kuchmiy, and V.F. Plyusnin, J. Nanopart. Res., 2015, 17, 1.
63. Wu, P.-J., K.-L. Ou, J.-K. Chen, H.-P. Fang, S.-H. Tzing, W.-X. Lin, and J.-Y. Chang, Mater. Lett., 2014, 128, 412.
64. Dabbousi, B., J. Rodriguez-Viejo, F.V. Mikulec, J. Heine, H. Mattoussi, R. Ober, K. Jensen, and M. Bawendi, J. Phys. Chem. B, 1997, 101, 9463.
65. Peng, X., M.C. Schlamp, A.V. Kadavanich, and A. Alivisatos, J. Am. Chem. Soc., 1997, 119, 7019.
66. Talapin, D.V., I. Mekis, S. Götzinger, A. Kornowski, O. Benson, and H. Weller, J. Phys. Chem. B, 2004, 108, 18826.
67. Li, L., A. Pandey, D.J. Werder, B.P. Khanal, J.M. Pietryga, and V.I. Klimov, J. Am. Chem. Soc., 2011, 133, 1176.
68. Yang, H. and P.H. Holloway, Appl. Phys. Lett., 2003, 82, 1965.
69. Pan, D., L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang, and Y. Lu, J. Am. Chem. Soc., 2008, 130, 5620.
70. Liu, Q., Z. Zhao, Y. Lin, P. Guo, S. Li, D. Pan, and X. Ji, Chem. Commun., 2011, 47, 964.
71. Reiss, P., M. Protiere, and L. Li, small, 2009, 5, 154.
72. Wu, P. and X.-P. Yan, Chem. Soc. Rev., 2013, 42, 5489.
73. Acharya, S., D. Sarma, N.R. Jana, and N. Pradhan, J. Phys. Chem. Lett., 2009, 1, 485.
74. Chen, Y., L. Huang, S. Li, and D. Pan, J. Mater. Chem. C, 2013, 1, 751.
75. Deng, L., Y. Shan, J.-J. Xu, and H.-Y. Chen, Nanoscale, 2012, 4, 831.
76. Jana, S., B.B. Srivastava, S. Acharya, P.K. Santra, N.R. Jana, D. Sarma, and N. Pradhan, Chem. Commun., 2010, 46, 2853.
77. Radovanovic, P.V. and D.R. Gamelin, J. Am. Chem. Soc., 2001, 123, 12207.
78. Schwartz, D.A., N.S. Norberg, Q.P. Nguyen, J.M. Parker, and D.R. Gamelin, J. Am. Chem. Soc., 2003, 125, 13205.
79. Zheng, W., K. Singh, Z. Wang, J.T. Wright, J. van Tol, N.S. Dalal, R.W. Meulenberg, and G.F. Strouse, J. Am. Chem. Soc., 2012, 134, 5577.
80. Jana, S., B.B. Srivastava, and N. Pradhan, J. Phys. Chem. Lett., 2011, 2, 1747.
81. Yang, P., M. Lü, G. Zhou, D. Yuan, and D. Xu, Inorg. Chem. Commun., 2001, 4, 734.
82. Buonsanti, R. and D.J. Milliron, Chem. Mater., 2013, 25, 1305.
83. Pradhan, N. and D. Sarma, J. Phys. Chem. Lett., 2011, 2, 2818.
84. Dalpian, G.M. and J.R. Chelikowsky, Phys. Rev. Lett., 2006, 96, 226802.
85. Nag, A., S. Chakraborty, and D. Sarma, J. Am. Chem. Soc., 2008, 130, 10605.
86. Norris, D., N. Yao, F. Charnock, and T. Kennedy, Nano Lett., 2001, 1, 3.
87. Pradhan, N., D. Goorskey, J. Thessing, and X. Peng, J. Am. Chem. Soc., 2005, 127, 17586.
88. Yang, Y., O. Chen, A. Angerhofer, and Y.C. Cao, J. Am. Chem. Soc., 2006, 128, 12428.
89. Chen, D., R. Viswanatha, G.L. Ong, R. Xie, M. Balasubramaninan, and X. Peng, J. Am. Chem. Soc., 2009, 131, 9333.
90. Ohno, H., science, 1998, 281, 951.
91. Beaulac, R., P.I. Archer, and D.R. Gamelin, J. Solid State Chem., 2008, 181, 1582.
92. Beaulac, R., P.I. Archer, X. Liu, S. Lee, G.M. Salley, M. Dobrowolska, J.K. Furdyna, and D.R. Gamelin, Nano Lett., 2008, 8, 1197.
93. Manna, G., S. Jana, R. Bose, and N. Pradhan, J. Phys. Chem. Lett., 2012, 3, 2528.
94. Chen, W., R. Sammynaiken, Y. Huang, J.-O. Malm, R. Wallenberg, J.-O. Bovin, V. Zwiller, and N.A. Kotov, Journal of Applied Physics, 2001, 89, 1120.
95. Nag, A., R. Cherian, P. Mahadevan, A.V. Gopal, A. Hazarika, A. Mohan, A. Vengurlekar, and D. Sarma, J. Phys. Chem. C, 2010, 114, 18323.
96. Gonzalez Beermann, P.A., B.R. McGarvey, S. Muralidharan, and R.C. Sung, Chem. Mater., 2004, 16, 915.
97. Jian, W., J. Fang, T. Ji, and J. He, Appl. Phys. Lett., 2003, 83, 3377.
98. Lee, D.-E., H. Koo, I.-C. Sun, J.H. Ryu, K. Kim, and I.C. Kwon, Chem. Soc. Rev., 2012, 41, 2656.
99. Cheon, J. and J.-H. Lee, Acc. Chem. Res., 2008, 41, 1630.
100. http://web.it.nctu.edu.tw/~hcsci/hospital/ins/mri.htm#1.
101. Wang, S., B.R. Jarrett, S.M. Kauzlarich, and A.Y. Louie, J. Am. Chem. Soc., 2007, 129, 3848.
102. Nose., K., T. Omata, and S. Otsuka-Yao-Matsuo, J. Phys. Chem. C, 2009, 113, 3455.
103. Zhang, S., S.-H. Wei, A. Zunger, and H. Katayama-Yoshida, Physical Review B, 1998, 57, 9642.
104. Chen, Y., S. Li, L. Huang, and D. Pan, Inorg. Chem., 2013, 52, 7819.
105. Jana, S., G. Manna, B.B. Srivastava, and N. Pradhan, Small, 2013, 9, 3753.
106. Mahapatra, N., S. Panja, A. Mandal, and M. Halder, J. Mater. Chem. C, 2014, 2, 7373.
107. Gore, A.H., D.B. Gunjal, M.R. Kokate, V. Sudarsan, P.V. Anbhule, S.R. Patil, and G.B. Kolekar, ACS Appl. Mater. Interfaces., 2012, 4, 5217.
108. Sadhu, S. and A. Patra, J. Phys. Chem. C, 2012, 116, 15167.
109. Xiang, W.-D., H.-L. Yang, X.-J. Liang, J.-S. Zhong, J. Wang, L. Luo, and C.-P. Xie, J. Mater. Chem. C, 2013, 1, 2014.
110. Pinaud, F., X. Michalet, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Iyer, and S. Weiss, Biomaterials, 2006, 27, 1679.
111. Sutherland, A.J., Curr. Opin. Solid State Mater., 2002, 6, 365.
112. Wiegand, C., S. Pflugmacher, A. Oberemm, and C. Steinberg, International review of hydrobiology, 2000, 85, 413.
113. 黃政鎮、游正博, 中央研究院週報,第1050期
114. Wedekind, C., B. von Siebenthal, and R. Gingold, Environ. Pollut., 2007, 148, 385.
115. Lammer, E., G. Carr, K. Wendler, J. Rawlings, S. Belanger, and T. Braunbeck, Comp. Biochem. Physiol. C, 2009, 149, 196.

無法下載圖示 全文公開日期 2021/08/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE