簡易檢索 / 詳目顯示

研究生: 蔡宜錄
Yi-Lu Tsai
論文名稱: 穩定態功能性磁振造影:刺激調變與反應強度之相依性研究
Functional Magnetic Resonance Imaging Using Balanced Steady-State Free Precession: a Task-Modulation-Dependence Study of Brain Functional Activation
指導教授: 黃騰毅
Teng-Yi Huang
口試委員: 蔡尚岳
Shang-Yueh Tsai
王福年
Fu-Nien Wang
林益如
Yi-Ru Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 59
中文關鍵詞: 平面回訊影像平衡穩定態自由旋進血氧相依程度血氧靈敏穩定態功能性對比
外文關鍵詞: EPI, TB-bSSFP, BOLD, BOSS, functional contrast
相關次數: 點閱:162下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 血氧靈敏穩定態已開始逐步應用於功能性磁振造影。該技術主要用來偵測質子頻率在穩定態自由旋進的相位圖之中,於狹窄的頻帶範圍內的相位變化,藉此產生功能性對比。血氧靈敏穩定態有別於傳統的平面回訊影像,其功能性對比具有複雜的非線性特性。以這種方式得到的功能性對比是否與平面回訊影像有著相同的反應結果,這是本論文欲深究探討的課題。我們的實驗證實:血氧靈敏穩定態在不同程度的視覺刺激之下,各自得到不同的功能性對比。相較於平面回訊影像技術,帶有更高的功能性對比。我們也進一步藉由平衡血氧靈敏穩定態與平面回訊影像之間的相關性係數得知兩種技術在不同程度的視覺刺激下,擁有高度的關聯性。


    Recently, blood oxygenation sensitive steady-state (BOSS) has been applied for functional MRI. The functional contrast of BOSS depends on the complex and nonlinear phase behavior, which is quite different from the BOLD methods. Whether the functional-contrast studies using the BOLD methods and BOSS can reach the same conclusions is still not investigated. To answer this question, in our study, we designed a visual experiment to compare the stimulus-rate dependency of the functional contrast of both BOLD-EPI and BOSS. In the result, the BOSS curve shows highly correlated to the BOLD-EPI curve. Furthermore, the averaged functional contrasts obtained by BOSS are higher than that obtained by BOLD-EPI.

    Chapter 1 Introduction 1 1.1 fMRI: BOLD and EPI 1 1.2 SSFP fMRI: Transition Band vs. Pass Band 3 1.3 Comparison between EPI and BOSS: A Stimulus-Rate Dependency Study 5 Chapter 2 Theory 6 2.1 Principles of EPI and Its Applications To The BOLD Study 6 2.1.1. Gradient-Echo EPI 6 2.1.2. EPI Gradients: Readout and Phase 8 2.1.3. EPI Artifacts 12 2.1.4 Application To BOLD Imaging 14 2.2 Balanced SSFP and Its Applications to fMRI 17 2.2.1 Balanced SSFP Sequence 18 2.2.2 Transition-Band bSSFP fMRI: Large Angle vs. Small Angle 21 2.2.3 Pass-Band bSSFP fMRI 25 Chapter 3 Methods and Materials 27 3.1 Software Packages and Other Functions 28 3.1.1 Psychtoolbox 28 3.1.2 fMRI Analysis Using SPM 29 3.1.2.1 SPM Introduction 29 3.1.2.2 Slice Timing 31 3.1.2.3 Image Registration 33 3.1.2.4 GLM Model 36 3.1.2.5 fMRI Time Series 39 3.2 Data Acquisition 42 3.3 Data Analysis 44 Chapter 4 Result 45 Chapter 5 Discussion 53 5.1 The Correction of Signals Drift 53 5.2 A Rate-Dependency Study of Human Visual Cortical Response 55 Reference 57

    1.Henry, P. G., P. F. van de Moortele, et al. (1999). "Field-frequency locked in vivo proton MRS on a whole-body spectrometer." Magn Reson Med 42(4): 636-42.
    2.Kwong, K. K., J. W. Belliveau, et al. (1992). "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation." Proc Natl Acad Sci U S A 89(12): 5675-9.
    3.Lee, J. H., S. O. Dumoulin, et al. (2008). "Full-brain coverage and high-resolution imaging capabilities of passband b-SSFP fMRI at 3T." Magn Reson Med 59(5): 1099-110.
    4.Lee, J., J. M. Santos, et al. (2006). "Respiration-induced B0 field fluctuation compensation in balanced SSFP: real-time approach for transition-band SSFP fMRI." Magn Reson Med 55(5): 1197-201.
    5.Miller, K. L., B. A. Hargreaves, et al. (2003). "Functional brain imaging using a blood oxygenation sensitive steady state." Magn Reson Med 50(4): 675-83.
    6.Miller, K. L., S. M. Smith, et al. (2006). "High-resolution FMRI at 1.5T using balanced SSFP." Magn Reson Med 55(1): 161-70.
    7.Miller, K. L., S. M. Smith, et al. (2007). "Signal and noise characteristics of SSFP FMRI: a comparison with GRE at multiple field strengths." Neuroimage 37(4): 1227-36.
    8.Ogawa, S., T. M. Lee, et al. (1990). "Brain magnetic resonance imaging with contrast dependent on blood oxygenation." Proc Natl Acad Sci U S A 87(24): 9868-72.
    9.Ogawa, S., T. M. Lee, et al. (1990). "Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields." Magn Reson Med 14(1): 68-78.
    10.Ozus, B., H. L. Liu, et al. (2001). "Rate dependence of human visual cortical response due to brief stimulation: an event-related fMRI study." Magn Reson Imaging 19(1): 21-5.
    11.Scheffler, K., E. Seifritz, et al. (2001). "Detection of BOLD changes by means of a frequency-sensitive trueFISP technique: preliminary results." NMR Biomed 14(7-8): 490-6.
    12.Wu, M. L., P. H. Wu, et al. (2007). "Frequency stabilization using infinite impulse response filtering for SSFP fMRI at 3T." Magn Reson Med 57(2): 369-79.
    13.Zhong, K., J. Leupold, et al. (2007). "Systematic investigation of balanced steady-state free precession for functional MRI in the human visual cortex at 3 Tesla." Magn Reson Med 57(1): 67-73. Zhu, X. H., S. G. Kim, et al. (1998). "Simultaneous oxygenation and perfusion imaging study of functional activity in primary visual cortex at different visual stimulation frequency: quantitative correlation between BOLD and CBF changes." Magn Reson Med 40(5): 703-11.
    14.Zhu, X. H., S. G. Kim, et al. (1998). "Simultaneous oxygenation and perfusion imaging study of functional activity in primary visual cortex at different visual stimulation frequency: quantitative correlation between BOLD and CBF changes." Magn Reson Med 40(5): 703-11.
    15.Boynton, G.M., Engel, S.A., et al. (1996). "Linear systems analysis of functional magnetic resonance imaging in human V1." J. Neurosci., 16(13): 4207-21.
    16.Dale, A.M., Bruckner R.L., et al. (1997). "Selective averaging of rapidly presented individual trials using fMRI." Hum. Brain mapping, 5:329-40.
    17.Bernstein, M.A., et al. (2004). Handbook of MRI Pulse Sequences, Elsevier Inc.
    18.McClellan J.H., et al. (2003). Signal Processing First, Prentice Hall.
    19.Cohen, M.S., et al. (1999).Echo-Planar Imaging and Functional MRI. Functional MRI. Springer.: 137-48
    20.Huettel, S.A., et al. (2004). Functional Magnetic Resonance Imaging, Sinauer Associates Inc.

    QR CODE