簡易檢索 / 詳目顯示

研究生: Murugan Subramani
Murugan Subramani
論文名稱: 熱處理和強烈塑性變形對 AZ61/Al2O3/SiC 混合金屬基複合材料組織和力學性能的影響研究
Effects of Heat Treatment and Severe Plastic Deformation on Microstructure and Mechanical Properties of AZ61/Al2O3/SiC Hybrid Metal Matrix Composites
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 黃崧任
Song-Jeng Huang
丘群
Chun Chiu
陳復國
Fuh-Kuo Chen
李天錫
Lee, Tien-Hsi
林景崎
Lin, Jing-Chie
曾有志
Zeng Youzhi
Konstantin Borodianskiy
Konstantin Borodianskiy
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 129
中文關鍵詞: AZ61 alloyHybrid compositesMicrostructureMechanical propertiesStir castingECAP processing
外文關鍵詞: AZ61 alloy, Hybrid composites, Microstructure, Mechanical properties, Stir casting, ECAP processing
相關次數: 點閱:220下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


Acknowledgement 1 Table of contents 3 List of Figures 7 List of tables 10 Abstract (摘要) 11 Chapter 1: Introduction 13 1.1. Motivation 13 1.2. Composites 14 1.3. Metal matrix composites (MMCs) 15 1.4. Hybrid metal matrix composites (HMMCs) 20 1.5. Research layout 21 Chapter 2: Background 22 2.1. Introduction of Magnesium alloy 22 2.1.1. Effects of Aluminum 22 2.1.2. Effect of Zinc 22 2.1.3. Effect of Manganese 22 2.1.4. Effects of Iron 23 2.1.5. Effects of Silicon 23 2.1.6. Rare earth metals 23 2.2. Phase diagram of Magnesium-aluminum (Mg-Al) 23 2.3. Effect of reinforcement size, shape, and volume fractions 25 2.4. Effect of single-particle reinforcement on Mg alloys 26 2.5. Effect of hybrid particle reinforcement on Mg alloys. 28 2.6. Mechanisms of the interfacial structural integrity of micro/nano reinforcement and matrix 29 2.6.1. Strengthening mechanisms of MMCs 29 2.6.1.1. Hall-Petch strengthening (Grain-boundary strengthening) 30 2.6.1.2. Coefficients of thermal expansion (CTE) and elastic modulus (EM) mismatches 31 2.6.1.3. Orowan strengthening 32 2.6.1.4. Load transfer strengthening 32 2.6.1.5. Overall yield strength 33 2.6.2. Strength weakening effects 33 Chapter 3: Fabrication methods and experimental procedures 35 3.1. Fabrication methodologies 35 3.1.1. Liquid state processing 36 3.1.1.1. Stir casting 36 3.1.1.2. Infiltration 37 3.1.2. Solid-state processing 39 3.1.2.1. Powder metallurgy 39 3.1.2.2. Diffusion bonding 40 3.1.3. In-situ processing 41 3.2. Secondary heat treatment processes 42 3.2.1. Heat treatment processes 43 3.2.1.1. Homogenization heat treatment 43 3.2.1.2. Solution heat treatment 43 3.2.1.3. Ageing heat treatment 44 3.2.2. Plastic deformation processes 44 3.2.2.1. Equal-channel angular pressing (ECAP) 47 3.3. Objectives 49 3.4. Experimental procedures 50 Chapter 4: Effect of alumina and silicon carbide nanoparticle hybrid reinforcement on the microstructure and mechanical properties of AZ61 alloys 53 4.1. Introduction 53 4.2. Experimental procedures 56 4.2.1. Materials and fabrication methods 56 4.2.2. Material characterization 57 4.2.3. Density and porosity measurements 58 4.2.4. Mechanical properties 59 4.3. Results 61 4.3.1. XRD analysis 61 4.3.2. Microstructure analysis 63 4.3.3. Density and porosity 67 4.3.4. Mechanical properties 69 4.3.4.1. Hardness 69 4.3.4.2. Tensile properties 70 4.3.4.3. Compressive properties 72 4.4. Discussion 75 4.4.1. Effect of hybrid reinforcement on the mechanical properties 75 4.4.2. Fracture surface 81 Chapter 5: Strength and ductility enhancement of AZ61/ Al2O3/SiC hybrid composite by ECAP processing 84 5.1. Introduction 84 5.2. Material and Methods 86 5.3. Results and discussions 89 5.3.1. Microstructure observations 89 5.3.2. Elemental and phase composition 91 5.3.3. Determination of mechanical properties 98 5.3.4 Investigation of fracture morphology 102 Chapter 6: Conclusions 106 Future work: 108 Publication list: 109 Reference: 110

[1] C.T. Herakovich, Mechanics of composites: A historical review, Mechanics Research Communications. 41 (2012) 1–20.
[2] Walter. Krenkel, R. (Roger) Naslain, H. (Hartmut) Schneider, G. International Conference on High-Temperature Ceramic-Matrix Composites (4th : 2001 : Munich, Metal Matrix Composites Custom-made Materials for Automotive and Aerospace Engineering, Wiley-VCH, 2001.
[3] E. Starke Jr, H. Rashed, Reference Module in Materials Science and Materials Engineering, alloys: aluminum, (2017) 18–24.
[4] J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys-a critical review, 2002.
[5] M. Razavi, A.R. Farajipour, M. Zakeri, M.R. Rahimipour, A.R. Firouzbakht, Production of Al2O3-SiC nano-composites by spark plasma sintering, Boletin de La Sociedad Espanola de Ceramica y Vidrio. 56 (2017) 186–194.
[6] Y.L. Dong, F.M. Xu, X.L. Shi, C. Zhang, Z.J. Zhang, J.M. Yang, Y. Tan, Fabrication and mechanical properties of nano-/micro-sized Al2O3/SiC composites, Materials Science and Engineering A. 504 (2009) 49–54.
[7] M. Paramsothy, J. Chan, R. Kwok, M. Gupta, Al2O3 Nanoparticle Addition to Commercial Magnesium Alloys: Multiple Beneficial Effects, Nanomaterials. 2 (2012) 147–162.
[8] S. Huang, B. Ballóková, M. Balog, M. Besterci, K. Sülleiová, Effects of ECAP on the mechanical properties of Mg-Al2O3 nanocomposites, Journal of Achievements in Materials and Manufacturing Engineering. 69 (2015) 10–17.
[9] S. Han, M.E. Alam, A.M.S. Hamouda, Q.B. Nguyen, M. Gupta, Enhancing mechanical properties of AZ31 magnesium alloy through simutaneous addition of aluminum and nao-Al2O3, 2010.
[10] S.J. Huang, A.N. Ali, Experimental investigations of effects of SiC contents and severe plastic deformation on the microstructure and mechanical properties of SiCp/AZ61 magnesium metal matrix composites, Journal of Materials Processing Technology. 272 (2019) 28–39.
[11] Q. Xu, A. Ma, B. Saleh, Y. Li, Y. Yuan, J. Jiang, C. Ni, Enhancement of strength and ductility of SiCp/AZ91 composites by RD-ECAP processing, Materials Science and Engineering A. 771 (2020).
[12] K.K. Chawla, Ceramic Matrix Composites in composite materials, Springer, 1998.
[13] T. W. Clyne, P. J. Withers, An Introduction to Metal Matrix Composites, (1995).
[14] S. Rawal, Metal-matrix composites for space applications, JOM. 53 (2001) 14–17.
[15] V.G. Martynenko, G.I. Lvov, Review of methods for solving the contact problems of viscoelastic composite shells, Bulletin of the National Technical University «KhPI» Series: Dynamics and Strength of Machines. 1 (2017) 32–48.
[16] B. Anasori, Fabrication and Mechanical Properties of Magnesium Alloy Composites Reinforced with TiC and Ti 2 AlC Particles, 2014.
[17] S.-J. Huang, M. Subramani, A.N. Ali, D.B. Alemayehu, J.-N. Aoh, P.-C. Lin, The Effect of Micro-SiCp Content on the Tensile and Fatigue Behavior of AZ61 Magnesium Alloy Matrix Composites, International Journal of Metalcasting. (2020).
[18] M. Rashad, F. Pan, W. Guo, H. Lin, M. Asif, M. Irfan, Effect of alumina and silicon carbide hybrid reinforcements on tensile, compressive and microhardness behavior of Mg-3Al-1Zn alloy, Materials Characterization. (2015).
[19] S. Sankaranarayanan, R.K. Sabat, S. Jayalakshmi, S. Suwas, M. Gupta, Effect of hybridizing micron-sized Ti with nano-sized SiC on the microstructural evolution and mechanical response of Mg-5.6Ti composite, Journal of Alloys and Compounds. 575 (2013) 207–217.
[20] C. Godbole, The influence of reinforcement on microstructure, hardness, tensile deformation, cyclic fatigue and final fracture behavior of two magnesium alloys, 2011.
[21] A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, D.H. Stjohn, Development of the as-cast microstructure in magnesium-aluminium alloys, J Light Met 1, 2001.
[22] S. Barbagallo, H.I. Laukli, O. Lohne, E. Cerri, Divorced eutectic in a HPDC magnesium-aluminum alloy, in: Journal of Alloys and Compounds, 2004: pp. 226–232.
[23] S. Richmire, K. Hall, M. Haghshenas, Design of experiment study on hardness variations in friction stir welding of AM60 Mg alloy, Journal of Magnesium and Alloys. 6 (2018) 215–228.
[24] H. Hu, X. Nie, Y. Ma, Corrosion and Surface Treatment of Magnesium Alloys, in: Magnesium Alloys - Properties in Solid and Liquid States, InTech, 2014.
[25] E.F. Emley, A.A. Nayeb-Hashemi, J.B. Clark, Principles of Magnesium Technology ‹ › Phase Diagrams of Binary Magnesium Alloys, 1966.
[26] X. Guo, Q. Guo, J. Nie, Z. Liu, Z. Li, G. Fan, D.B. Xiong, Y. Su, J. Fan, D. Zhang, Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites, Materials Science and Engineering A. 711 (2018) 643–649.
[27] L.M. Tham, M. Gupta, L. Cheng, Predicting the failure strains of Al/SiC composites with reacted matrix-reinforcement interfaces, Materials Science and Engineering A. 354 (2003) 369–376.
[28] Y.S. Yi, Y. Meng, D.Q. Li, S. Sugiyama, J. Yanagimoto, Partial melting behavior and thixoforming properties of extruded magnesium alloy AZ91 with and without addition of SiC particles with a volume fraction of 15%, Journal of Materials Science and Technology. 34 (2018) 1149–1161.
[29] M.J. Shen, X.J. Wang, C.D. Li, M.F. Zhang, X.S. Hu, M.Y. Zheng, K. Wu, Effect of bimodal size SiC particulates on microstructure and mechanical properties of AZ31B magnesium matrix composites, Materials and Design. 52 (2013) 1011–1017.
[30] A. Abbas, S.J. Huang, B. Ballóková, K. Sülleiová, Tribological effects of carbon nanotubes on magnesium alloy AZ31 and analyzing aging effects on CNTs/AZ31 composites fabricated by stir casting process, Tribology International. 142 (2020).
[31] S.J. Huang, A. Abbas, Effects of tungsten disulfide on microstructure and mechanical properties of AZ91 magnesium alloy manufactured by stir casting, Journal of Alloys and Compounds. 817 (2020) 153321.
[32] Q.B. Nguyen, K.S. Tun, J. Chan, R. Kwok, J.V.M. Kuma, T.H. Phung, M. Gupta, Simultaneous effect of nano-Al 2O 3 and micrometre Cu particulates on microstructure and mechanical properties of magnesium alloy AZ31, Materials Science and Technology. 28 (2012) 227–233.
[33] K.S. Tun, V. Tungala, Q.B. Nguyen, J. Chan, R. Kwok, J. Kuma, M. Gupta, Enhancing tensile and compressive strengths of magnesium using nanosize (Al 2O 3 + Cu) hybrid reinforcements, Journal of Composite Materials. 46 (2012) 1879–1887.
[34] Q.B. Nguyen, M. Gupta, Increasing significantly the failure strain and work of fracture of solidification processed AZ31B using nano-Al2O3 particulates, Journal of Alloys and Compounds. 459 (2008) 244–250.
[35] J. Shen, W. Yin, Q. Wei, Y. Li, J. Liu, L. An, Effect of ceramic nanoparticle reinforcement’s on the quasistatic and dynamic mechanical properties of magnesium-based metal matrix composites, Journal of Materials Research. 28 (2013) 1835–1852.
[36] S. Xiang, X. Wang, M. Gupta, K. Wu, X. Hu, M. Zheng, Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties, Scientific Reports. 6 (2016).
[37] E.O. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results". Proc. Phys. Soc. Lond. 64 (9), 1951.
[38] R. Casati, M. Vedani, Metal matrix composites reinforced by Nano-Particles—A review, Metals (Basel). 4 (2014) 65–83.
[39] T.W. Clyne, D. Hull, An Introduction to Composite Materials, 2019.
[40] F.A. Mirza, D.L. Chen, A unified model for the prediction of yield strength in particulate-reinforced metal matrix nanocomposites, Materials. 8 (2015) 5138–5153.
[41] X.G. Qiao, T. Ying, M.Y. Zheng, E.D. Wei, K. Wu, X.S. Hu, W.M. Gan, H.G. Brokmeier, I.S. Golovin, Microstructure evolution and mechanical properties of nano-SiCp/AZ91 composite processed by extrusion and equal channel angular pressing (ECAP), Materials Characterization. 121 (2016) 222–230.
[42] J. Hashim, L. Looney, J. Hashmi, Metal matrix composites: production by the stir casting method, Journal of Materials Processing Technology., 1999.
[43] A. Canakci, F. Arslan, T. Varol, Physical and mechanical properties of stir-casting processed AA2024/B4Cp composites, Science and Engineering of Composite Materials. 21 (2014) 505–515.
[44] S.K. Thandalam, S. Ramanathan, S. Sundarrajan, Synthesis, microstructural and mechanical properties of ex situ zircon particles (ZrSiO4) reinforced Metal Matrix Composites (MMCs): A review, Journal of Materials Research and Technology. 4 (2015) 333–347.
[45] A. Kumar, O. Vichare, K. Debnath, M. Paswan, Fabrication methods of metal matrix composites (MMCs), in: Materials Today: Proceedings, Elsevier Ltd, 2020: pp. 6840–6846.
[46] A. Tripathy, S. Kumar Sarangi, A.K. Chaubey, A Review of Solid State Processes in Manufacture of Functionally Graded Materials, 2018.
[47] Soroush Shakiba Jahromi, Reza Jahedi, The production and sustainable role of particle composites in engineering structures Denmark-Copenhagen The production and sustainable role of particle composites in engineering structures, 2018.
[48] R. Kapoor, Severe Plastic Deformation of Materials, in: materials under extreme conditions: recent trends and future prospects, Elsevier Inc., 2017: pp. 717–754.
[49] R. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nature materials, 2004.
[50] V. v Stolyarov, Y.T. Zhu, I. v Alexandrov, T.C. Lowe, R.Z. Valiev, Influence of ECAP routes on the microstructure and properties of pure Ti, 2001.
[51] M. Subramani, S. Huang, Effect of SiC Nanoparticles on AZ31 Magnesium Alloy, (2022) 1–12.
[52] Y. liang Cheng, T. wei Qin, H. min Wang, Z. Zhang, Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys, Transactions of Nonferrous Metals Society of China (English Edition). 19 (2009) 517–524.
[53] B.L. Mordike, T. Ebert, Magnesium Properties - applications - potential, Materials Science and Engineering A. 302 (2001) 37–45.
[54] K.B. Nie, K.K. Deng, X.J. Wang, T. Wang, K. Wu, Influence of SiC nanoparticles addition on the microstructural evolution and mechanical properties of AZ91 alloy during isothermal multidirectional forging, Materials Characterization. 124 (2017) 14–24.
[55] M. Gupta, W.L.E. Wong, Magnesium-based nanocomposites: Lightweight materials of the future, Materials Characterization. 105 (2015) 30–46.
[56] Q. Zhang, H. Hu, Development of Hybrid Magnesium-based Composites, (2018).
[57] Q.B. Nguyen, Y.H.D. Chua, K.S. Tun, J. Chan, R. Kwok, W.L.E. Wong, M. Gupta, Effect of addition of nano-al2o3 and copper particulates and heat treatment on the tensile response of az61 magnesium alloy, Journal of Engineering Materials and Technology, Transactions of the ASME. 135 (2013).
[58] S.J. Huang, A.N. Ali, Effects of heat treatment on the microstructure and microplastic deformation behavior of SiC particles reinforced AZ61 magnesium metal matrix composite, Materials Science and Engineering A. 711 (2018) 670–682.
[59] H.Y. Wang, Q.C. Jiang, Y. Wang, B.X. Ma, F. Zhao, Fabrication of TiB 2 particulate reinforced magnesium matrix composites by powder metallurgy, 58 (2004) 3509–3513.
[60] M. Paramsothy, J. Chan, R. Kwok, M. Gupta, Composites : Part A Addition of CNTs to enhance tensile / compressive response of magnesium alloy ZK60A, Composites Part A. 42 (2011) 180–188.
[61] H. Dieringa, Processing of magnesium-based metal matrix nanocomposites by ultrasound-assisted particle dispersion: A review, Metals (Basel). 8 (2018).
[62] S.C. Tjong, Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties, Advanced Engineering Materials. 9 (2007) 639–652.
[63] T. Laha, S. Kuchibhatla, S. Seal, W. Li, A. Agarwal, Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite, Acta Materialia. 55 (2007) 1059–1066.
[64] J. Zhou, X. Zhang, L. Fang, H. Hu, Processing and Properties of As-Cast Magnesium AM60-Based Composite Containing Alumina Nano Particles and Micron Fibres, (2017) 573–578.
[65] X. Zhang, Q. Zhang, H. Hu, Tensile behaviour and microstructure of magnesium AM60-based hybrid composite containing Al2O3 fibres and particles, Materials Science and Engineering A. 607 (2014) 269–276.
[66] S. Han, M.E. Alam, A.M.S. Hamouda, Q.B. Nguyen, M. Gupta, Enhancing mechanical properties of AZ31 magnesium alloy through simultaneous addition of aluminum and nano-Al2O3, ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). 12 (2010) 145–152.
[67] Ł. Rogal, B. Baran, P. Bobrowski, A. Tarasek, P. Ozga, L. Lityńska-Dobrzyńska, Effect of nano-sic on microstructure and mechanical properties of az91 magnesium alloy processed by thixomolding, Solid State Phenomena. 285 SSP (2019) 133–138.
[68] M. Pahutová, V. Sklenička, K. Kuchařová, M. Svoboda, Creep resistance in magnesium alloys and their composites, International Journal of Materials and Product Technology. 18 (2003) 116–140.
[69] S. Ganguly, A.K. Mondal, Influence of SiC nanoparticles addition on microstructure and creep behavior of squeeze-cast AZ91-Ca-Sb magnesium alloy, Materials Science and Engineering A. 718 (2018) 377–389.
[70] U.K. Annigeri, G.B. Veeresh Kumar, Method of stir casting of Aluminum metal matrix Composites: A review, Materials Today: Proceedings. 4 (2017) 1140–1146.
[71] H. Ye, X.Y. Liu, Review of recent studies in magnesium, Journal of Materials Science. 39 (2004) 6153–6171.
[72] C.U. Atuanya, V.S. Aigbodion, Evaluation of Al-Cu-Mg alloy/bean pod ash nanoparticles synthesis by double layer feeding-stir casting method, Journal of Alloys and Compounds. 601 (2014) 251–259.
[73] S.J. Huang, V. Rajagopal, A.N. Ali, Influence of the ECAP and HEBM processes and the addition of Ni catalyst on the hydrogen storage properties of AZ31-x Ni (x=0,2,4) alloy, International Journal of Hydrogen Energy. 44 (2019) 1047–1058.
[74] R. Purohit, Y. Dewang, R.S. Rana, D. Koli, S. Dwivedi, Fabrication of magnesium matrix composites using powder metallurgy process and testing of properties, Materials Today: Proceedings. 5 (2018) 6009–6017.
[75] B.P. KUMAR, A.K. BIRRU, Microstructure and mechanical properties of aluminium metal matrix composites with addition of bamboo leaf ash by stir casting method, Transactions of Nonferrous Metals Society of China (English Edition). 27 (2017) 2555–2572.
[76] P. Poddar, S. Mukherjee, K.L. Sahoo, The microstructure and mechanical properties of SiC reinforced magnesium based composites by rheocasting process, Journal of Materials Engineering and Performance. 18 (2009) 849–855.
[77] P.K. Krishnan, J.V. Christy, R. Arunachalam, A.H.I. Mourad, R. Muraliraja, M. Al-Maharbi, V. Murali, M.M. Chandra, Production of aluminum alloy-based metal matrix composites using scrap aluminum alloy and waste materials: Influence on microstructure and mechanical properties, Journal of Alloys and Compounds. 784 (2019) 1047–1061.
[78] Y. Mingbo, P. Fusheng, C. Renju, S. Jia, Comparison about effects of Sb, Sn and Sr on as-cast microstructure and mechanical properties of AZ61-0.7Si magnesium alloy, Materials Science and Engineering A. 489 (2008) 413–418.
[79] M.T. Victor, G. Selvakumar, S. Surendarnath, P. Ravindran, Materials Today : Proceedings Mechanical Properties of magnesium hybrid composite reinforced with Al 2 O 3 and MoS 2 particles through PM route, Materials Today: Proceedings. 37 (2021) 2396–2400.
[80] Y. Say, O. Guler, B. Dikici, Carbon nanotube (CNT) reinforced magnesium matrix composites: The effect of CNT ratio on their mechanical properties and corrosion resistance, Materials Science and Engineering A. 798 (2020).
[81] S. Aravindan, P. v. Rao, K. Ponappa, Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process, Journal of Magnesium and Alloys. 3 (2015) 52–62.
[82] D. Sameer Kumar, K.N.S. Suman, C. Tara Sasanka, K. Ravindra, P. Poddar, S.B. Venkata Siva, Microstructure, mechanical response and fractography of AZ91E/Al2O3 (p) nano composite fabricated by semi solid stir casting method, Journal of Magnesium and Alloys. 5 (2017) 48–55.
[83] B.Q. Han, D.C. Dunand, Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids, Materials Science and Engineering A. 277 (2000) 297–304.
[84] W.L.E. Wong, M. Gupta, Development of Mg/Cu nanocomposites using microwave assisted rapid sintering, Composites Science and Technology. 67 (2007) 1541–1552.
[85] K.K. Deng, X.J. Wang, W.M. Gan, Y.W. Wu, K.B. Nie, K. Wu, M.Y. Zheng, H.G. Brokmeier, Isothermal forging of AZ91 reinforced with 10vol.% silicon carbon particles, Materials Science and Engineering A. 528 (2011) 1707–1712.
[86] X. He, J. Liu, L. An, The mechanical behavior of hierarchical Mg matrix nanocomposite with high volume fraction reinforcement, Materials Science and Engineering A. 699 (2017) 114–117.
[87] B. Sułkowski, Effect of Texture on Deformation Mode in Magnesium and Az61 Alloy, Metallurgy and Foundry Engineering. 44 (2018) 91.
[88] T. Ye, Y. Xu, J. Ren, Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite, Materials Science and Engineering A. 753 (2019) 146–155.
[89] Q. hong Yuan, Z. qiang Qiu, G. hua Zhou, X. shu Zeng, L. Luo, X.X. Rao, Y. Ding, Y. Liu, Interfacial design and strengthening mechanisms of AZ91 alloy reinforced with in-situ reduced graphene oxide, Materials Characterization. 138 (2018) 215–228.
[90] Y. Xiang, X. Wang, X. Hu, L. Meng, Z. Song, X. Li, Z. Sun, Q. Zhang, K. Wu, Achieving ultra-high strengthening and toughening efficiency in carbon nanotubes/magnesium composites via constructing micro-nano layered structure, Composites Part A: Applied Science and Manufacturing. 119 (2019) 225–234
[91] J.W. Kaczmar, K. Pietrzak, W. Wlosiński, Production and application of metal matrix composite materials, Journal of Materials Processing Technology. 106 (2000) 58–67.
[92] A. Abbas, S.J. Huang, ECAP effects on microstructure and mechanical behavior of annealed WS2/AZ91 metal matrix composite, Journal of Alloys and Compounds. 835 (2020).
[93] A. Prasad Reddy, P. Vamsi Krishna, R. Narasimha Rao, N. v. Murthy, Silicon Carbide Reinforced Aluminium Metal Matrix Nano Composites-A Review, Materials Today: Proceedings. 4 (2017) 3959–3971.
[94] S. Huang, M. Subramani, C. Chiang, Effect of hybrid reinforcement on microstructure and mechanical properties of AZ61 magnesium alloy processed by stir casting method, Composites Communications. 25 (2021) 100772.
[95] M.M. Jalilvand, Y. Mazaheri, Effect of mono and hybrid ceramic reinforcement particles on the tribological behavior of the AZ31 matrix surface composites developed by friction stir processing, Ceramics International. 46 (2020) 20345–20356.
[96] S.J. Huang, S. Diwan Midyeen, M. Subramani, C.C. Chiang, Microstructure evaluation, quantitative phase analysis, strengthening mechanism and influence of hybrid reinforcements (β-sicp, bi and sb) on the collective mechanical properties of the az91 magnesium matrix, Metals (Basel). 11 (2021).
[97] H. Dieringa, Processing of magnesium-based metal matrix nanocomposites by ultrasound-assisted particle dispersion: A review, Metals (Basel). 8 (2018).
[98] V. Selivorstov, Y. Dotsenko, K. Borodianskiy, Influence of low-frequency vibration and modification on solidification and mechanical properties of Al-Si casting alloy, Materials. 10 (2017).
[99] K. Borodianskiy, V. Selivorstov, Y. Dotsenko, M. Zinigrad, Effect of additions of ceramic nanoparticles and gas-dynamic treatment on Al casting alloys, Metals (Basel). 5 (2015) 2277–2288.
[100] A. Khandelwal, K. Mani, N. Srivastava, R. Gupta, G.P. Chaudhari, Mechanical behavior of AZ31/Al2O3 magnesium alloy nanocomposites prepared using ultrasound assisted stir casting, Composites Part B: Engineering. 123 (2017) 64–73.
[101] A. Abbas, S.J. Huang, Investigation of severe plastic deformation effects on microstructure and mechanical properties of WS2/AZ91 magnesium metal matrix composites, Materials Science and Engineering A. 780 (2020) 139211.
[102] L. Zheng, H. Nie, W. Liang, H. Wang, Y. Wang, Effect of pre-homogenizing treatment on microstructure and mechanical properties of hot-rolled AZ91 magnesium alloys, Journal of Magnesium and Alloys. 4 (2016) 115–122.
[103] J. Li, F. Li, X. Ma, J. Li, S. Liang, Effect of grain boundary characteristic on intergranular corrosion and mechanical properties of severely sheared Al-Zn-Mg-Cu alloy, Materials Science and Engineering A. 732 (2018) 53–62..
[104] B.N. Sahoo, F.K. MD, S. Babu, S.K. Panigrahi, G.D. Janaki Ram, Microstructural modification and its effect on strengthening mechanism and yield asymmetry of in-situ TiC-TiB2/ AZ91 magnesium matrix composite, Materials Science and Engineering A. 724 (2018) 269–282.
[105] B.N. Sahoo, S.K. Panigrahi, A study on the combined effect of in-situ (TiC-TiB2) reinforcement and aging treatment on the yield asymmetry of magnesium matrix composite, Journal of Alloys and Compounds. 737 (2018) 575–589.
[106] A.H. Feng, B.L. Xiao, Z.Y. Ma, R.S. Chen, Effect of friction stir processing procedures on microstructure and mechanical properties of Mg-Al-Zn casting, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 40 (2009) 2447–2456.
[107] H. Abdizadeh, R. Ebrahimifard, M.A. Baghchesara, Investigation of microstructure and mechanical properties of nano MgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: A comparative study, Composites Part B: Engineering. 56 (2014) 217–221.
[108] R.B. Figueiredo, T.G. Langdon, Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP, in: Journal of Materials Science, 2010: pp. 4827–4836.
[109] M. Subramani, Y.-C. Tzeng, L.-W. Tseng, Y.-K. Tsai, G.-S. Chen, C.-Y. Chung, S.-J. Huang, Hot deformation behavior and processing map of AZ61/SiC composites, Materials Today Communications. 29 (2021) 102861.
[110] M. Mu, Z. Zhi-Min, Z. Bao-Hong, D. Jin, Flow behaviors and processing maps of as-cast and as-homogenized AZ91 alloy, Journal of Alloys and Compounds. 513 (2012) 112–117.
[111] M.H. Abdelaziz, M. Paradis, A.M. Samuel, H.W. Doty, F.H. Samuel, Effect of Aluminum Addition on the Microstructure, Tensile Properties, and Fractography of Cast Mg-Based Alloys, Advances in Materials Science and Engineering. 2017 (2017).
[112] C. Wang, A. Ma, J. Sun, H. Liu, H. Huang, Z. Yang, J. Jiang, Effect of ECAP process on as-cast and as-homogenized Mg-Al-Ca-Mn alloys with different Mg2Ca morphologies, Journal of Alloys and Compounds. 793 (2019) 259–270.
[113] P. Scherrer, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918.
[114] L. Segal, J.J. Creely, A.E. Martin, C.M. Conrad, opportunity for new developments in all phases of textile manufacturing. ’ Literature Cited An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer, 1952.
[115] A. Muralidhar, S. Narendranath, H. Shivananda Nayaka, Effect of equal channel angular pressing on AZ31 wrought magnesium alloys, Journal of Magnesium and Alloys. 1 (2013) 336–340.
[116] N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst. London. 174 (1953) 25–28.
[117] P. Franciszczak, J. Wojnowski, K. Kalniņš, E. Piesowicz, The influence of matrix crystallinity on the mechanical performance of short-fibre composites – Based on homo-polypropylene and a random polypropylene copolymer reinforced with man-made cellulose and glass fibres, Composites Part B: Engineering. 166 (2019) 516–526.
[118] E. Damavandi, S. Nourouzi, S.M. Rabiee, R. Jamaati, Effect of ECAP on microstructure and tensile properties of A390 aluminum alloy, Transactions of Nonferrous Metals Society of China (English Edition). 29 (2019) 931–940.

無法下載圖示 全文公開日期 2024/08/19 (校內網路)
全文公開日期 2024/08/19 (校外網路)
全文公開日期 2024/08/19 (國家圖書館:臺灣博碩士論文系統)
QR CODE