簡易檢索 / 詳目顯示

研究生: 鍾嘉哲
Jia-Jhe Jhong
論文名稱: 感知無線電網路上引誘式攻擊的設計與分析
Design and Analysis of Luring Attack in Cognitive Radio Ad Hoc Networks
指導教授: 鄭欣明
Shin-Ming Cheng
口試委員: 金台齡
Tai-Lin Chin
鄭博仁
none
林春成
Chun-Cheng Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 42
中文關鍵詞: 感知無線電攻擊隨機幾何演化賽局理論破窗理論
外文關鍵詞: evolutionary game theory, broken window theory
相關次數: 點閱:361下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 感知無線電 (Cognitive Radio; CR) 被設計用來提昇頻譜的使用效率。未授權的次要使用者 (Secondary User; SU) 利用CR的能力感測附近的環境並且利用尚未被授權的首要使用者 (Primary User; PU) 使用的空頻譜來達成SU之間的傳輸,並且要在傳輸過程當中盡量不干擾PU。但是SU很可能因為具有一些自私、貪婪的天性或者因為錯誤的資訊而違反既有的規則與PU同時進行傳輸以獲取額外的利益。透過這些缺點我們提出了一個分散式阻斷服務攻擊,惡意使用者 (Malicious User; MU) 將會假扮成故障的SU,並藉由使用者貪婪的天性引誘正常的SU與PU同時進行傳輸,進而攻擊整個無線網路。引誘SU直接進行干擾,MU在這種攻擊中很難被偵測出來。

    我們採用隨機幾何來模型化PU、SU和MU,並分析這三者之間互相干擾的情形。我們將用演化賽局理論來分析對於每一個使用不同存取策略的SU,他們將得到不同的利益並且造成不同的干擾。在破窗理論中我們可以得知使用者會有自私、貪婪的天性,也就是這些使用者會因為觀察到其他人正在做壞事而也想跟著一起違反規則。透過模擬結果我們可以觀察在不同的利益參數配置下,正常的SU以及受到引誘不正常的SU之數量變化。其結果也顯示在引誘式攻擊中,只需要一小部份的MU就可以造成大範圍的攻擊。我們也設計了簡單的防禦策略來偵測出MU,藉此研究促進感知無線電網路的實做及發展。


    Cognitive radio technology, which is designed to enhance spectrum utilization, depends on the success of opportunistic access, where secondary users (SUs) exploit spectrum void unoccupied by primary users (PUs) for opportunistic transmissions. However, SUs of a selfish and greedy nature or of misleading information may not stick to the liability rule and will make concurrent transmissions with PUs for additional incentives. By exploiting this vulnerability, this paper proposes a novel distributed denial-of-service (DoS) attack where randomly distributed malicious users (MUs) posing as malfunctioning SUs cooperatively induce originally behaved SUs to execute concurrent transmissions with PUs and thus collapse the cognitive radio network. Hiding behind SUs who directly inject interference, the malicious attack initiators are hard to identify and to detect.

    We adopt stochastic geometry to model the spatial distributions of PUs, SUs, and MUs to analyze the mutual interference among them. The access strategy of each SU, which evolves with the experienced payoffs and interference, is modeled by an evolutionary game. Through the broken window theory, we knew that users have the greedy and selfish nature. That is, when user observed that the others are misbehaved, they will also attempt to break the rule. We conduct extensive simulation experiments to investigate the population of behaved and misbehaved SUs under the different setups on payoffs. The results show that our attack requires smaller number of cooperative MUs to achieve a wider range of damage. We also design a simple detection model to identity the existence of MU, which facilitate the development and deployment of cognitive radio ad hoc networks.

    1. Introduction 2. Related Works and Background 3. System Model 4. Formula and Analysis 5. Simulation Result 6. Conclusion

    [1] G. Atia, A. Sahai, and V. Saligrama, “Spectrum enforcement and liability assignment in cognitive radio systems,” in Proc. IEEE DySPAN 2008, Oct. 2008.
    [2] A. Goldsmith, S. A. Jafar, I. Marić, and S. Srinivasa, “Breaking spectrum gridlock with cognitive radios: An information theoretic perspective,” Proc. IEEE, vol. 97, no. 5, pp. 894–914, May 2009.
    [3] T. X. Brown and A. Sethi, “Potential cognitive radio denial-of-service vulnerabilities and protection countermeasures: a multi-dimensional analysis and assessment,” Mobile Netw. Appl., vol. 13, no. 5, pp. 516–532, Oct. 2008.
    [4] G. Baldini, T. Sturman, A. Biswas, R. Leschhorn, G. Godor, and M. Street, “Security aspects in software defined radio and cognitive radio networks: A survey and a way ahead,” IEEE Commun. Surveys Tuts., vol. 14, no. 2, pp. 355–379, Apr. 2011.
    [5] A. Sampath, H. Dai, H. Zheng, and B. Y. Zhao, “Multi-channel jamming attacks using cognitive radios,” in Proc. ICCCN 2007, Aug. 2007, pp. 352–357.
    [6] R. Chen and J.-M. Park, “Ensuring trustworthy spectrum sensing in cognitive radio networks,” in Proc. IEEE SDR 2006, Sept. 2006, pp. 110–119.
    [7] J. Q. W. G. L. Kelling, “Broken windows,” Atlantic Monthly, vol. 249, no. 3, pp. 29–38, Mar. 1982.
    [8] G. R. Faulhaber, “Deploying cognitive radio: Economic, legal and policy issues,” International Journal of Commun., vol. 2, pp. 1114–1124, 2008.
    [9] R. Etkin, A. Parekh, and D. Tse, “Spectrum sharing for unlicensed bands,” IEEE J. Sel. Areas Commun., vol. 25, no. 3, pp. 517–528, Apr. 2007.
    [10] K. A. Woyach, A. Sahai, G. Atia, and V. Saligrama, “Crime and punishment for cognitive radios,” in 46th Allerton Conference on Communication Control and Computing, Sept. 2008, pp. 236–243.
    [11] G. Hardin, “The tragedy of the commons,” Science, vol. 162, no. 3859, pp. 1243–1248, Dec. 1968.
    [12] T. L. Vincent and J. S. Brown, Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics. Cambridge University Press, 2005.
    [13] S.-M. Cheng, P.-Y. Chen, and K.-C. Chen, “Ecology of cognitive radio ad hoc networks,” IEEE Commun. Lett., vol. 17, no. 7, pp. 764–766, July 2011.
    [14] D. Niyato and E. Hossain, “Dynamics of network selection in heterogeneous wireless networks: An evolutionary game approach,” IEEE Trans. Veh. Technol., vol. 58, no. 4, pp. 2008–2017, May 2009.
    [15] B. Wang, K. J. R. Liu, and T. C. Clancy, “Evolutionary cooperative spectrum sensing game: how to collaborate?” IEEE Trans. Commun., vol. 58, no. 3, pp. 890–900, Mar. 2010.
    [16] H. Tembine, E. Altman, R. El-Azouzi, and Y. Hayel, “Evolutionary games in wireless networks,” IEEE Trans. Syst., Man, Cybern. B, vol. 40, no. 3, pp. 634–646, June 2010.
    [17] T. C. Clancy and N. Goergen, “Security in cognitive radio networks: Threats and mitigation,” in Proc. IEEE CrownCom 2008, May 2008, pp. 1–8.
    [18] Y. Tan, K. Hong, S. Sengupta, and K. P. Subbalakshmi, “Spectrum stealing via Sybil attacks in DSA networks: Implementation and defense,” in Proc. IEEE ICC 2011, June 2011, pp. 1–5.
    [19] R. D. Pietro and G. Oligeri, “Jamming mitigation in cognitive radio networks,” IEEE Network, vol. 27, no. 3, pp. 10–15, May 2013.
    [20] R. Chen, J.-M. Park, and K. Bian, “Robust distributed spectrum sensing in cognitive radio networks,” in Proc. IEEE INFOCOM 2008, Apr. 2008, pp. 1876–1884.
    [21] Y. Cai, Y. Mo, K. Ota, and C. Luo, “Optimal data fusion of collaborative spectrum sensing under attack in cognitive radio networks,” IEEE Network, vol. 28, no. 1, pp. 19–23, Jan. 2014.
    [22] D. Pu and A. Wyglinski, “Primary-user emulation detection using databaseassisted frequency-domain action recognition,” IEEE Trans. Veh. Technol., vol. 63, no. 9, pp. 4372–4382, Apr. 2014.
    [23] C. Xin and M. Song, “Detection of PUE attacks in cognitive radio networks based on signal activity pattern,” IEEE Trans. Mobile Computing, vol. 13, no. 5, pp. 1022–1034, May 2014.
    [24] K. Pelechrinis, M. Iliofotou, and S. V. Krishnamurthy, “Denial of service attacks in wireless networks: The case of jammers,” IEEE Commun. Surveys Tuts., vol. 13, no. 2, pp. 245–257, June 2011.
    [25] Y. Tan, S. Sengupta, and K. P. Subbalakshmi, “Analysis of coordinated denialof-services attacks in IEEE 802.22 networks,” IEEE J. Sel. Areas Commun., vol. 29, no. 4, pp. 890–902, Apr. 2011.
    [26] B. Wang, Y. Wu, K. J. R. Liu, and T. C. Clancy, “An anti-jamming stochastic game for cognitive radio networks,” IEEE J. Sel. Areas Commun., vol. 29, no. 4, pp. 877–889, Apr. 2011.
    [27] Q. Peng, P. C. Cosman, and L. B. Milstein, “Spoofing or jamming: Performance analysis of a tactical cognitive radio adversary,” IEEE J. Sel. Areas Commun., vol. 29, no. 4, pp. 903–911, Apr. 2011.
    [28] S. Sodagari, A. Attar, V. C. M. Leung, and S. G. Bilen, “Denial of service attacks in cognitive radio networks through channel eviction triggering,” in Proc. IEEE Globecom 2010, Dec. 2010, pp. 1–5.
    [29] H. Li and Z. Han, “Catch me if you can: An abnormality detection approach for collaborative spectrum sensing in cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3554–3565, Nov. 2010.
    [30] A. S. Rawat, P. Anand, H. Chen, and P. K. Varshney, “Collaborative spectrum sensing in the presence of byzantine attacks in cognitive radio networks,” IEEE Trans. Signal Process., vol. 59, no. 2, pp. 774–786, Feb. 2011.
    [31] R. Chen, J.-M. Park, and J. H. Reed, “Defense against primary user emulation attacks in cognitive radio networks,” IEEE J. Sel. Areas Commun., vol. 26, no. 1, pp. 25–37, Jan. 2008.
    [32] Z. Jin, S. Anand, and K. P. Subbalakshmi, “Mitigating primary user emulation attacks in dynamic spectrum access networks using hypothesis testing,” ACM SIGMOBILE Mobile Comput. and Commun. Rev., vol. 13, no. 2, pp. 74–85, Apr. 2009.
    [33] H. Li and Z. Han, “Dogfight in spectrum: Combating primary user emulation attacks in cognitive radio systems, part I: Known channel statistics,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3566–3577, Nov. 2010.
    [34] C. Chen, H. Cheng, and Y.-D. Yao, “Cooperative spectrum sensing in cognitive radio networks in the presence of the primary user emulation attack,” IEEE Trans. Wireless Commun., vol. 10, no. 7, pp. 2135–2141, July 2011.
    [35] A. E. Motter and Y.-C. Lai, “Cascade-based attacks on complex networks,” Phys. Rev. E., vol. 66, no. 6, p. 065102(4), Dec. 2002.
    [36] P. Traynor, W. Enck, P. McDaniel, and T. L. Porta, “Mitigating attacks on open functionality in SMS-capable cellular networks,” IEEE/ACM Trans. Netw., vol. 17, no. 1, pp. 40–53, Jan. 2009.
    [37] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to coverage and rate in cellular networks,” IEEE Trans. Commun., vol. 59, no. 11, pp. 3122–3134, Oct. 2011.
    [38] C.-H. Lee, C.-Y. Shih, and Y.-S. Chen, “Stochastic geometry based models for modeling cellular networks in urban areas,” Wireless networks, vol. 19, no. 6, pp. 1063–1072, Aug. 2013.
    [39] J. M. Dietrich Stoyan, Wilfrid S Kendall, Stochastic Geometry and Its Applications, 2nd ed. Wiley, 1996.
    [40] P. Madhusudhanan, Y. Liu, and T. Brown, “On primary user coverage probabilities and faulty cognitive radios,” IEEE Trans. Wireless Commun., vol. 13, no. 11, pp. 6207–6218, Sept. 2014.
    [41] W. C. Ao and S.-M. Cheng, “A lower bound on multi-hop transmission delay in cognitive radio ad hoc networks,” in Proc. 22nd Annu. IEEE Int. Symp. PIMRC 2013, Sept. 2013, pp. 3323–3327.
    [42] A. Babaei, P. Agrawal, and B. Jabbari, “Statistics of aggregate interference in cognitive wireless ad hoc networks,” in Proc. of ICNC 2012, Jan. 2012, pp. 397–401.
    [43] C.-H. Lee and C.-Y. Shih, “Coverage analysis of cognitive femtocell networks,” IEEE Wireless Commun. Letters, vol. 3, no. 2, pp. 177–180, Jan. 2014.
    [44] J. W. Weibull, Evolutionary Game Theory. MIT Press, 1997.
    [45] Z. Zhang and H. Zhang, “A variable-population evolutionary game model for resource allocation in cooperative cognitive relay networks,” IEEE Commun. Lett., vol. 17, no. 2, pp. 361–364, Jan. 2013.
    [46] G. Theodorakopoulos and J. S. Baras, “Game theoretic modeling of malicious users in collaborative networks,” IEEE J. Sel. Areas Commun., vol. 26, no. 7, pp. 1317–1327, Sept. 2008.
    [47] W. C. Ao, S.-M. Cheng, and K.-C. Chen, “Phase transition diagram for underlay heterogeneous cognitive radio networks,” in Proc. IEEE Globecom 2010, Dec. 2010, pp. 1–6.
    [48] A. M. Hunter, J. G. Andrews, and S. P. Weber, “Transmission capacity of ad hoc networks with spatial diversity,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5058–5071, Dec. 2008.
    [49] M. Haenggi, J. Andrews, F. Baccelli, and O. Dousse, “Stochastic geometry and random graphs for the analysis and design of wireless networks,” IEEE J. Sel. Areas Commun., vol. 27, no. 7, pp. 1029–1046, Sept. 2009.

    無法下載圖示 全文公開日期 2020/02/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE