簡易檢索 / 詳目顯示

研究生: 李庭亞
Ting-Ya Lee
論文名稱: 載波聚合應用於通用濾波多載波系統之效能評估
Performance Evaluation of Carrier Aggregation in Universal-Filtered Multi-Carrier System
指導教授: 張立中
Li-Chung Chang
口試委員: 劉馨勤
Hsin-Chin Liu
曾德峰
Der-Feng Tseng
陳永芳
Yung-Fang Chen
曾恕銘
Shu-Ming Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 74
中文關鍵詞: 通用濾波多載波載波聚合接收器濾波器
外文關鍵詞: Universal-Filtered Multi-Carrier, Carrier Aggregation, Receiver, Filter
相關次數: 點閱:266下載:37
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在第四代行動通訊(4G)中,正交分頻多工系統(OFDM)是被廣泛使用的調變系統,但其每個子載波之間因為通道和環境因素,而產生非常大的旁帶,進而造成載波間干擾(ICI),濾波器組多載波系統(FBMC)因而被提出來克服OFDM系統中的ICI影響,但是由於FBMC系統是將每一子載波進行濾波,如此一來更造成了高複雜度以及符元的時間變長,通用濾波多載波系統(UFMC)結合了兩系統之優點,將一個資源區塊(RB) 的資料經過一個客製化濾波器,以達到降低旁帶以及減少複雜度和濾波器長度。也因如此,UFMC被認為是第五代行動通訊標準(5G)的候選之一。
在長期演進技術進階版(LTE-A)中,載波聚合(CA)為其中重要的技術之一,利用不同頻段的載波分量進行聚合,提升高傳輸速度。因此本篇論文提出載波聚合應用於通用濾波多載波(CA-UFMC)來提升UFMC系統的傳輸速度,並且對於其誤碼率(BER)進行分析;在UFMC系統中,也適用所有OFDM系統之接收端架構,本篇論文也對於不同接收端進行分析。接著嘗試使用不同濾波器應用在CA-UFMC系統中,來達到更高的傳輸品質。


Orthogonal Frequency Division multiplexing(OFDM) system is widely used in the 4th generation of mobile phone mobile communication technology standards (4G). However, the system exists inter-carrier interference (ICI) which caused by the high spectral sidelobe level of each subcarrier in channel or interface. Filter-bank multi-carrier (FBMC) system has been proposed to overcome this problem, but it also turns out that the huge complexity and long symbol duration become the drawbacks of FBMC. Universal-filtered Multi-carrier (UFMC) system that was proposed to combine the advantages of two system uses a filtering operation which applies to a resource block (RB) to suppress the sidelobe of OFDM and reduce the complexity of FBMC. Also, UFMC is a candidate waveform for the next generation of wireless communication.
Carrier Aggregation (CA) is one of the most important technique in LTE-Advanced. By aggregating carrier components (CC) in different spectral, the system can highly increase the data rate. Therefore, in this paper, we propose a system called Carrier Aggregation in Universal-filtered Multi-carrier (CA-UFMC) system to improve the data rate in UFMC system. Moreover, we analyze the bit-error rate in the system. UFMC system can also apply the detection scheme in OFDM, so we compare them in the proposed system. Further, we use different filter types to the system to achieve high quality of signal.

摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第1章 序論 1 1.1 研究動機與目的 1 1.2 論文架構 2 第2章 系統架構與相關理論介紹 3 2.1 通用濾波多載波系統 3 2.1.1 傳送端架構 4 2.1.2 接收端架構 7 2.1.3 多爾夫・柴比雪夫濾波器 13 2.2 長期演進技術進階版 15 2.2.1 載波聚合 16 2.2.2 通道模型 17 第3章 提出的架構 19 3.1 載波聚合應用於通用濾波多載波系統 19 3.2 載波聚合應用於通用濾波多載波系統的架構 21 3.2.1 不同接收端架構 21 3.2.2 不同濾波器架構 23 第4章 模擬結果與討論 29 4.1 通用濾波多載波系統和正交分頻多工系統的BER效能 29 4.2 有無載波聚合的BER效能 31 4.2.1 不同通道下的BER效能 31 4.2.2 不同濾波器下的BER效能 40 4.3 CA-UFMC的BER效能 57 4.3.1 不同載波個數相同頻寬下的BER效能 57 4.3.2 不同載波個數不同頻寬下的BER效能 63 第5章 結論與未來研究方向 69 附錄A 70 參考文獻 72

[1] T. Yunzheng, L. Long, L. Shang, Z. Zhi,” A survey: Several technologies of non-orthogonal transmission for 5G” in China Communications, IEEE, pp.1-15, Nov. 2015.
[2] 3GPP TR 25.892, “Technical Specification Group Radio Access Network; Feasibility Study for Orthogonal Frequency Division Multiplexing (OFDM) for UTRAN enhancement”, Jun. 2004.
[3] 5GNOW, “4G Americas’ Recommendations on 5G Requirements and Solutions”, Oct. 2014. http://www.5gnow.eu/?page_id=318
[4] Vakilian V., Wild T., Schaich F., ten Brink S., Frigon J.-F., ”Universal-filtered multi-carrier technique for wireless systems beyond LTE,” in 2013 IEEE Globecom Workshops (GC Wkshps), pp.223,228, 9-13 Dec. 2013.
[5] Athens.Farhang-Boroujeny B., "OFDM Versus Filter Bank Multicarrier" in Signal Processing Magazine, IEEE , vol.28, no.3, pp.92,112, May 2011.
[6] Schaich F. and T. Wild. “Waveform contenders for 5G - OFDM vs. FBMC vs. UFMC.” in 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), pp.457-460, 2014.
[7] Sher A.C., Kristuna N., Mohammadhossein A., Bilal Z., Martin H.,” Performance Comparison of Space Time Block Codes for Different 5G Air Interface Proposals” WSA 2016; 20th International ITG Workshop on Smart Antennas, pp.1-7, 2016.
[8] Y. Shen and E. Martinez, "Channel estimation in OFDM systems," Application note, Freescale semiconductor, 2006.
[9] X. Wang, T. Wild, F. Schaich, S.T. Brink, “Pilot-Aided Channel Estimation for Universal Filtered Multi-Carrier,” 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), 2015 IEEE, pp.1-5.
[10] Rohda and Schwarz, “1MA271: 5G Waveform Candidates”, Application note, 2017
https://www.rohde-schwarz.com/us/applications/5g-waveform-candidates-application-note_56280-267585.html.
[11] 5GNOW D3.2,” 5G Waveform Candidate Selection.”, Version: 1.3, Aug. 2014.
[12] Schaich F., and T. Wild., Y. Chen,” Waveform Contenders for 5G - Suitability for Short Packet and Low Latency Transmissions” in 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), pp.1-5, 2014.
[13] Penrose, Roger, "A generalized inverse for matrices". Proceedings of the Cambridge Philosophical Society. 51: 406–413.
[14] T. Morse, J. Gotze., “Reducing Complexity of Generalized Minimum Mean Square Error Detection.”, 2010 18th European Signal Processing Conference, 2010 IEEE, pp. 169-173.
[15] Digital Signal Processing Committee of the IEEE Acoustics, Speech, and Signal Processing Society, eds. Programs for Digital Signal Processing. New York: IEEE Press, 1979, program 5.2.
[16] Harris, Fredric J., Multirate “Signal Processing for Communication Systems Upper Saddle River”, NJ: Prentice Hall PTR, 2004, pp. 60–64.
[17] Lynch, Prter., “The Dolph-chebyshev window: A simple optimal filter,” Monthly weather review, pp.655,660, 1997
[18] R. Ratasuk, D. Tolli, and A. Ghosh, “Carrier Aggregation in LTE-Advanced,” in Vehicular Technology Conference (VTC 2010-Spring), 2010 IEEE 71st, 2010, pp. 1-5.
[19] 3GPP TS 36.104, " Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (Release 14)," Apr., 2017.
[20] 3GPP TS 36.101, " Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (Release 14)" Apr., 2017.
[21] X. Wang, T. Wild, F. Schaich, A. F. Santos, “Universal Filtered Multi-Carrier with Leakage-Based Filter Optimization” European Wireless 2014; 20th European Wireless Conference, 2014, pp.1-5.
[22] X. Wang, T. Wild, F. Schaich, “Filter Optimization for Carrier-Frequency- and Timing-Offset in Universal Filtered Multi-Carrier Systems”, 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), 2015 pp.1-6.
[23] Harris, F. J. (1978). "On the use of windows for harmonic analysis with the discrete Fourier transform". Proceedings of the IEEE
[24] T. Irino and H. Kawahara, ``Signal reconstruction from modified auditory wavelet transform,'' IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3549-3554, 1993.
[25] K. Gentile, “The care and feeding of digital, pulse-shaping filters,” available: www.rfdesign.com.
[26] S. Daumont, B. Rihawi, Y. Lout, “Root-Raised Cosine filter influences on PAPR distribution of single carrier signals”, 2008 3rd International Symposium on Communications, Control and Signal Processing, 2008, pp.841-845.
[27] Yah. Yu-Chia, “Study of Phase Detection Techniques without Directly Sending Side Information in LTE-A Uplink Systems.” National Taiwan University of Science and Technology, 2016.

QR CODE