簡易檢索 / 詳目顯示

研究生: Dhoni Hartanto
Dhoni - Hartanto
論文名稱: Vapor-Liquid Equilibrium of Aqueous Alcohol Mixtures in the Presence of Biological Buffer TRIS or EPPS
Vapor-Liquid Equilibrium of Aqueous Alcohol Mixtures in the Presence of Biological Buffer TRIS or EPPS
指導教授: 李明哲
Ming-Jer Lee
口試委員: 杜建勳
Chien-Hsun Tu
林河木
Ho-Mu Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 101
中文關鍵詞: isobaric vapor-liquid equilibriumazeotropebiological buffer
外文關鍵詞: isobaric vapor-liquid equilibrium, azeotrope, biological buffer
相關次數: 點閱:184下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Isobaric vapor-liquid equilibrium (VLE) data were measured for three ternary systems of tert-butanol (1) + water (2) + TRIS (3), 2-propanol (1) + water (2) + EPPS (3), and 1-propanol (1) + water (2) + EPPS (3) at 101.32 kPa by using a modified recirculating type of Othmer equilibrium still. The concentration range of the added biological buffer is from 0.05 to 0.30 in mass fraction. The presence of TRIS produced significantly azetropic composition shift for the aqueous tert-butanol system. In the presence of EPPS in aqueous 2-propanol mixture, the azeotropic composition shifting effect was also found substantially from aqueous 2-propanol system, while only minor effect on the VLE behavior for the aqueous 1-propanol system. The experimental VLE data were correlated with the NRTL model to determine the binary interaction parameters. Generally, the NRTL model correlate reasonably well for the systems investigated in this study. These new VLE ternary data of EPPS-containing systems were also taken as a basis for evaluating the applicability of the binary parameters determined from the liquid-liquid equilibrium (LLE) data for predicting the VLE properties. Large discrepancy was found from this evaluation, and indicating that the simulation of buffer-recovery distillation column should use the parameters determined from the VLE data.


    Isobaric vapor-liquid equilibrium (VLE) data were measured for three ternary systems of tert-butanol (1) + water (2) + TRIS (3), 2-propanol (1) + water (2) + EPPS (3), and 1-propanol (1) + water (2) + EPPS (3) at 101.32 kPa by using a modified recirculating type of Othmer equilibrium still. The concentration range of the added biological buffer is from 0.05 to 0.30 in mass fraction. The presence of TRIS produced significantly azetropic composition shift for the aqueous tert-butanol system. In the presence of EPPS in aqueous 2-propanol mixture, the azeotropic composition shifting effect was also found substantially from aqueous 2-propanol system, while only minor effect on the VLE behavior for the aqueous 1-propanol system. The experimental VLE data were correlated with the NRTL model to determine the binary interaction parameters. Generally, the NRTL model correlate reasonably well for the systems investigated in this study. These new VLE ternary data of EPPS-containing systems were also taken as a basis for evaluating the applicability of the binary parameters determined from the liquid-liquid equilibrium (LLE) data for predicting the VLE properties. Large discrepancy was found from this evaluation, and indicating that the simulation of buffer-recovery distillation column should use the parameters determined from the VLE data.

    Abstract i Acknowledgements ii Table of Contents iv List of Figures vi List of Tables ix Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Previous Study 4 1.3 Problem Statement 6 1.4 Research Objective 7 1.5 Research Outline 8 Chapter 2 Literature Study 10 2.1 Alcohols 10 2.1.1 ¬2-Methyl-2-propanol (tert-butanol) 10 2.1.2 ¬Propyl Alcohol (1-propanol) 11 2.1.3 ¬Isopropyl Alcohol (2-propanol) 12 2.2 Azeotrope 13 2.3 Extractive Distillation 16 2.4 Biological Buffer 17 2.4.1 ¬Tris(hydroxymethyl)aminomethane (TRIS) 17 2.4.2 3-[4-(2-Hydroxyethyl)-1-piperazine]propanesulfonic acid (EPPS) 18 2.5 Defining the “New” Components in Aspen Plus V7.2 18 2.6 Vapor-Liquid Equilibrium 19 2.7 The Nonrandom Two-Liquid (NRTL) Model 22 2.8 The Herington Thermodynamic Consistency Test 23 Chapter 3 Experimental Section 32 3.1 Materials 32 3.2 Apparatus 32 3.3 Experimental Procedure 34 3.4 Sample Analysis 36 Chapter 4 Results and Discussion 45 4.1 Experimental Reliability Test 45 4.2 Experimental Results for Investigated Ternary Systems 45 4.3 The Thermodynamic Concistency Test 48 4.4 Comparison the NRTL Model Using Binary Interaction Parameters Obtained from VLE and LLE Data Correlation 48 Chapter 5 Conclusions 89 References 91 Nomenclatures 100

    Altway, S. (2012), Liquid-liquid Equilibrium of Aqueous Solutions in the Presence of Biological Buffer MOPS or MOPS Sodium Salt. Master Thesis, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
    Altway, S., Taha, M., and Lee, M. J. (2012), Separation of 2-Propanol from Its Aqueous Solution with the Aid of a Biological Buffer MOPS, 2012程序系統工程研討, May 25-26,溪頭
    Anon. (1987), Chemical Market Profile: Isopropanol, Chem. Market. Rep., 31 August: 46
    Atkins, P.W. (1994), Physical Chemistry, 5th ed. p.250, Oxford University Press, Oxford, England.
    Britt, H.I. and Luecke, R.H. (1973), The Estimation of Parameters in Nonlinear, Implicit Models, Technometrics, 15 (2), 233-247.
    Brunjes, A.S., and Bogart, M.J.P. (1943), Vapor-Liquid Equilibria for Commercially Important Systems of Organic Solvents: the Binary Systems Ethanol - n-Butanol, Acetone - Water, and Isopropanol – Water, Ind. Eng. Chem., 35, 255-260.
    Calvar, N., González, B., Gómez, E., and Domínguez, Á. (2008), Vapor–Liquid Equilibria for the Ternary System Ethanol + Water + 1-Ethyl-3-Methylimidazolium Ethylsulfate and the Corresponding Binary Systems Containing the Ionic Liquid at 101.3 kPa, J. Chem. Eng. Data, 53 (3), 820-825.
    Calvar, N., González, B., Gómez, E., and Domínguez, A. (2009), Vapor−Liquid Equilibria for the Ternary System Ethanol + Water + 1-Butyl-3-Methylimidazolium Methylsulfate and the Corresponding Binary Systems at 101.3 kPa, J. Chem. Eng. Data, 54, 1004-1008.
    Cao, D. and Bergens, S.H. (2003), A Direct 2-Propanol Polymer Electrolyte Fuel Cell, J. Power Sources, 124 (1), 12-17.
    CEC (1982), Propan-2-ol: Chemico-Physical Data, Toxicity Data, Environmental Occurrence, and Permissible Levels, In: Report of the Scientific Committee for Food on Extraction Solvents, Commission of the European Communities, Directorate General for Internal Market and Industrial Affairs, Brussels, Belgium, 46-72.
    Dawe, R.A., Newsham, D.M.T., and Ng, S.B. (1973), Vapor-Liquid Equilibriums in Mixtures of Water, 1-Propanol, and 1-Butanol, J. Chem. Eng. Data, 18 (1), 44-49.
    Gmehling, J. and Onken, U. (1977), Vapor-Liquid Equilibrium Data Collection, DECHEMA, Frankfurt, Germany.
    Gmehling, J., J. Menke, J. Krafczyk, and K. Fischer (1994), Azeotropic Data, Part I and Part II, VCH-Publishers, Weinheim, New York, USA.
    Gupta, B. S. (2012), Vapor Liquid Equlibria of Mixtures Containing Aromatics and Parafin or Aqueous Propanol in the Presence of Biological Buffer. PhD Thesis, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
    Hawley, G.G. (1981), Condensed Chemical Dictionary, 10th ed., Van Nostrand Reinhold Company Inc., Melbourne, Australia.
    Hayden, J.G. and O'Connell, J.P. (1975), A Generalized Method for Predicting Second Virial Coefficients, Ind. Eng. Chem. Process Des. Dev, 14 (3), 209-216.
    Herington,E. F.G. (1961), Tests for the Consistency of Experimental Isobaric Vapour-liquid Equilibrium Data, J. Inst. Pet., 37,457-470.
    Horsley, L.H. (1973), Azeotropic Data – III, Advances in Chemistry Series 116, Ed. R.F. Gould, American Chemistry Society, Washington, DC, USA.
    Iarc (1977), Some Fumigants, The Herbicides 2,4-D And 2,4,5-T, Chlorinated Dibenzodioxins And Miscellaneous Industrial Chemicals, International Agency for Research on Cancer, Lyons, France, 223-243.
    Johnson, A.I. and Furter, W.F. (1957), Salt Effect in Vapor-Liquid Equlibrium, Can. J. Technol., 34, 413-424.
    Kallet, R.H., Jasmer, R.M., Luce, J.M., Lin, L.H., and Marks, J.D. (2000), The Treatment of Acidosis in Acute Lung Injury with Tris-Hydroxymethyl Aminomethane (Tham), Am. J. Respir. Crit. Care Med., 161 (4 Pt 1), 1149-1153.
    King, C.J. (1980), Separation Processes, 2nd ed., Mc-Graw Hill, New York, USA.
    Kirk, R.E. and Othmer, D.F., (1978-1984), Encyclopedia of Chemical Technology, 3rd ed., Wiley Interscience, New York, USA.
    Kumar, J.A., Kalyani, P., and Saravanan, R. (2008), Studies on Pem Fuel Cells Using Various Alcohols for Low Power Applications, Int. J. Electrochem. Sci., 3, 961 – 969.
    Lee, H.Y. (2013), Personal Communication, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
    Li, Q., Zhu, W., Wang, H., Ran, X., Fu, Y., and Wang, B. (2012), Isobaric Vapor–Liquid Equilibrium for the Ethanol + Water + 1,3-Dimethylimidazolium Dimethylphosphate System at 101.3 kPa, J. Chem. Eng. Data, 57 (3), 696-700.
    Lucas-Lenard, J. and Lipmann, P. (1996), Separation of Three Microbial Amino Acid Polymerization Factors, National Academy os Sciences, Uppsala, Sweden.
    McNaught, A.D. and Wilkinson, A. (2009), IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"), Blackwell Scientific Publications, Oxford, England.
    Meranda, D. and Furter, W.F. (1971), Vapor-Liquid Equilibrium in Alcohol-Water Systems Containing Dissolved Acetate Salts, AlChE J., 17 (1), 38-42.
    Meranda, D. and Furter, W.F. (1972), Vapor-Liquid Equilibrium in Alcohol-Water Systems Containing Dissolved Halide Salts and Salt Mixtures, AlChE J., 18 (1), 111-116.
    Morrison, J.F., Baker, J.C., Meredith, H.C., Newman, K.E., Walter, T.D., Massie, J.D., Perry, R.L., and Cummings, P.T. (1990), Experimental Measurement of Vapor-Liquid Equilibrium in Alcohol/Water/Salt Systems, J. Chem. Eng. Data, 35 (4), 395-404.
    NIST Standard Reference Database No. 69, National Institute of Standard and Technology, USA (2011), Isopropyl Alcohol, Entry from NIST Chemistry WebBook, (http://webbook.nist.gov/cgi/cbook.cgi?ID=C67630&Mask=8)
    NIST Standard Reference Database No. 69, National Institute of Standard and Technology, USA (2011), 1-Propanol, Entry from NIST Chemistry WebBook (http://webbook.nist.gov/cgi/cbook.cgi?Name=1-propanol&Units=SI).
    NIST Standard Reference Database No. 69, National Institute of Standard and Technology, USA (2011), 2-Propanol, 2-Methyl, Entry from NIST Chemistry WebBook, (http://webbook.nist.gov/cgi/cbook.cgi?ID=75650).
    Ognisty, T.P. (1995), “ Analyze Distillation Columns with Thermodynamics”, Chem. Eng. Prog., 40–46.
    Orchillés, A.V., Miguel, P.J., Llopis, F.J., Vercher, E., and Martínez-Andreu, A. (2011), Isobaric Vapor–Liquid Equilibria for the Extractive Distillation of Ethanol + Water Mixtures Using 1-Ethyl-3-Methylimidazolium Dicyanamide, J. Chem. Eng. Data, 56 (12), 4875-4880.
    Osawa, S., Kariyone, K., Ichihara, F., Arai, K., Takagasa, N., and Ito, H. (2005), Development and Application of Serum Cholinesterase Activity Measurement Using Benzoylthiocholine Iodide, Clin. Chim. Acta, 351 (1-2), 65-72.
    Othmer, D.F. (1928), Composition of Vapors from Boiling Binary Solutions, Ind. Eng. Chem., 20 (7), 743-746.
    Papa, A.J. (2000), Propanols. Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, West Virginia, USA.
    Perry, R.H. and C.H. Chilton (1973), Chemical Engineers’ Handbook. Chem. Engng. Series. 5th ed., McGraw Hill, Inc., New York, USA.
    Quitzsch, K., Kopp, R., Renker, W., and Geiseler, G. (1968), Ueber die Druckabhaengigkeit des azeotropbildenden Systems t-Butanol / Wasser. Z. Phys. Chem., 237, 256–266.
    Rackett, H.G. (1970), Equation of State for Saturated Liquids, J. Chem. Eng. Data, 15 (4), 514-517.
    Renon, H. and Prausnitz, J.M. (1968), Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures, AlChE J., 14 (1), 135-144.
    Sambrook, J. and Russell, D.W. (2001), Molecular Cloning: A Laboratory Manual. 3rd ed., Page A1.3, CSHL Press Cold Spring Harbor, New York, USA.
    Sandler, S.I (2006), Chemical, Biochemical, and Engineering Thermodynamics, 5th edition, John Wiley & Sons, Inc., New York, USA.
    Santodonato, J. (1985), Monograph On Human Exposure to Chemicals. In The Workplace: Isopropyl Alcohol, Center for Chemical Hazard Assessment, Syracuse Research Corporation, Syracuse, New York, USA.
    Smith, J.M (2001), Chemical Engineering Thermodynamics, 6th edition, McGraw Hill, Inc., New York, USA.
    Taha, M., Teng, H.-L. and Lee, M.-J. (2013), Buffering-Out: Separation of Tetrahydrofuran, 1,3-Dioxolane, or 1,4-Dioxane from Their Aqueous Solutions Using EPPS Buffer at 298.15 K, Sep. Purif. Technol., 105, 33-40.
    Taha, M., Teng, H.-L., and Lee, M.-J. (2012), The Buffering-Out Effect and Phase Separation in Aqueous Solutions of EPPS Buffer with 1-Propanol, 2-Propanol, or 2-Methyl-2-Propanol at T= 298.15 K, J. Chem. Thermodyn., 47, 154-161.
    Van Ness, H.C. (1964), Classical Thermodynamics of Non-Electrolyte Solutions, Pergamon, p. 79, Oxford, England.
    Verschueren, K. (1983), Handbook Of Environmental Data On Organic Chemicals, 2nd ed., Van Nostrand Reinhold Company Inc., Melbourne, Australia.
    Vora, S.R., Thakore, S.B., Padhiyar, N., Pathan A. (2013), A. Effect of Addition of LiBr Salt in Iso-propanol + Water Binary Azeotropic Mixture, IJSET, 2(4), 245-248.
    World Health Organization (2010), Guide to Local Production: Who-Recommended Handrub Formulation Series, WHO, Geneva, Switzerland.
    Xu, W. and Vogel, S.R. (2010), Combustible Mixed Butanol Fuels, United States Patent Application Publication, USA.
    Yamada, T. and Gunn, R.D. (1973), Saturated Liquid Molar Volumes. Rackett Equation, J. Chem. Eng. Data, 18 (2), 234-236.
    Zakhari, S. (1977), Isopropanol and Ketones in The Environment, CRC Press Oxford, England.

    無法下載圖示 全文公開日期 2018/07/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE