簡易檢索 / 詳目顯示

研究生: 林冠榮
Kuan-Jung Lin
論文名稱: 應用模糊理論與獨立成分分析法於感應電動機之故障診斷系統研製
Implementation of an Induction Motor Diagnosis System Using Fuzzy Theory and Independent Component Analysis
指導教授: 郭政謙
Cheng-Chien Kuo
口試委員: 劉運鴻
李清雲
陳鴻誠
張宏展
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 103
中文關鍵詞: 鼠籠式感應電動機故障診斷模糊理論獨立成分分析
外文關鍵詞: Squirrel-cage induction motor, fault diagnosis, fuzzy theory, independent component analysis
相關次數: 點閱:676下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

電動機在長時間運轉下,受到許多自然或人為災害的影響是不可避免的,致使其長期於溫度、壓力、過電流及過電壓的機電交互作用下,逐步產生機械結構或電氣絕緣的老化現象,若不能採取適當的措施,將逐步擴大危害,甚至造成生產設備故障並停止運轉。因此,若能在電動機出現初期故障徵兆時,透過監測設備與診斷系統找出原因並提早修復,將可節省大量的時間與維護成本。
有鑑於此,本研究旨在提出基於模糊理論與獨立成分分析法之感應電動機故障診斷系統,其中包含三大核心:(1)以週期性訊號擴充法搭配離散傅立葉轉換之頻譜特徵為主,電氣指標運算為輔,建立馬達故障類型與其特徵關係,(2)挑選合適的診斷指標,作為模糊推論與獨立成分分類器之設計依據,(3)以人機介面呈現完整的電氣訊息與故障診斷結果。經測試得以證明,兩診斷方法的交互比對,能提供檢測人員更可靠之診斷結果,此外本研究的設計流程,將有助於後續建立不同馬達故障診斷之參考依據。


When motors are under long-term operation, there must have some unavoidable effects that lead to aging phenomenon of mechanical structure and electrical insulation due to the interaction of temperature, pressure, over-current and over-voltage. If it doesn’t take appropriate measures, the danger will gradually expand and may cause equipment breakdown. Therefore, if the faulty features can be found by monitoring device and diagnostic system in the beginning period, it will save a lot of time and maintenance cost.
Above all, this research proposes the diagnostic system of induction motor failure based on fuzzy theory and independent component analysis, which contains three core components: (1) Establish the relationship of failure types with spectrum features and electrical features through the combination of integer periodic extension method and discrete Fourier transform, and the calculation of electrical indexes; and (2) selecting appropriate diagnosis index to be the reference for design of the fuzzy inference and the independent component classifier; and (3) the graphical interface is used to show the completed electrical information and the result of failure diagnosis. The test is proved that the cross validation of two methods can offer users a dependable diagnosis results. Furthermore, the designed processes will be applied as a reference for building the diagnostic methods of other motors.

中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 1 1.3 研究架構 5 1.4 章節概述 6 第二章 感應電動機量測平台與故障模型建立 7 2.1 前言 7 2.2 量測平台建立 7 2.2.1 感測器 8 2.2.2 資料擷取盒 9 2.3 瑕疵馬達試驗模型 12 2.3.1 轉子故障模型 14 2.3.2 對中故障模型 14 2.3.3 軸承故障模型 15 2.3.4 定子故障模型 15 第三章 理論基礎與分析方法介紹 16 3.1 前言 16 3.2 離散傅立葉轉換 17 3.3 模糊理論 20 3.3.1 模糊化 21 3.3.2 聚合模糊規則 22 3.3.3 解模糊化 22 3.4 獨立成分分析法 23 3.4.1 混和訊號輸入 23 3.4.2 訊號前置處理 25 3.4.3 FastICA求解混和矩陣 27 3.4.4 獨立成分應用於特徵分類 29 第四章 感應電動機故障診斷系統設計 30 4.1 前言 30 4.2 故障類型與其特徵關係建立 31 4.2.1 轉子故障特徵 33 4.2.2 偏心故障特徵 40 4.2.3 軸承故障特徵 44 4.2.4 定子故障特徵 48 4.3 基於模糊理論之故障診斷設計 51 4.3.1 轉子故障診斷模型 53 4.3.2 對中故障診斷模型 54 4.3.3 軸承故障診斷模型 55 4.3.4 整合式故障診斷模型 57 4.4 基於獨立成分分析之故障診斷設計 59 4.5 馬達狀態監測人機介面設計 64 第五章 實例分析與驗證 72 5.1 前言 72 5.2 健康馬達診斷案例 72 5.3 轉子斷條馬達診斷案例 74 5.4 氣隙偏心馬達診斷案例 76 5.5 軸承外環損傷馬達診斷案例 78 第六章 結論與未來展望 80 參考文獻 82

[1] Lucia Frosini, and Ezio Bassi, ‘‘Stator Current and Motor Efficiency as Indicators for Different Types of Bearing Faults in Induction Motors,’’ IEEE Transactions on Industrial Electronics, Vol. 57, No. 1, January 2010.
[2] Pero Ostojic, Arijit Banerjee, Dhaval C. Patel, Wrichik Basu, and Shahid Ali, ‘‘Advanced Motor Monitoring and Diagnostics,’’ IEEE Transactions on Industrial Applications, Vol. 50, No. 5, September/October 2014.
[3] Yusuke Yagami, Chika Araki, Yukio Mizuno, and Hisahide Nakamura, ‘‘Turn-to-Turn Insulation Failure Diagnosis of Stator Winding of Low Voltage Induction Motor with the Aid of Support Vector Machine,’’ IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 22, No. 6, December 2015.
[4] R. B. W. Heng, and M. J. M. Nor, ‘‘Statistical Analysis of Sound and Vibration Signals for Monitoring Rolling Element Bearing Condition,’’ Elsevier Science Ltd., Applied Acoustics, Vol. 53, No. 1-3, pp. 211-226, 1998.
[5] Maryam Eftekhari, Mehdi Moallem, Saeed Sadri, and Min-Fu Hsieh, ‘‘Online Detection of Induction Motor’s Stator Winding Short-Circuit Faults,’’ IEEE Systems Journal, Vol. 8, No. 4, December 2014.
[6] Xiaohang Jin, Mingbo Zhao, Tommy W. S. Chow, and Michael Pecht, and Michael Pecht, ‘‘Motor Bearing Fault Diagnosis Using Trace Ratio Linear Discriminant Analysis,’’ IEEE Transactions on Industrial Electronics, Vol. 61, No. 5, May 2014.
[7] Abdenour Soualhi, Guy Clerc, and Hubert Razik, ‘‘Detection and Diagnosis of Faults in Induction Motor Using an Improved Artificial Ant Clustering Technique,’’ IEEE Transactions on Industrial Electronics, Vol. 60, No. 9, September 2013.
[8] Manuel Pineda-Sanchez, Martin Riera-Guasp, Jose Alfonso Antonino-Daviu, Jose Roger-Folch, Juan Perez-Cruz, and Ruben Puche-Panadero, ‘‘Instantaneous Frequency of the Left Sideband Harmonic During the Start-Up Transient: A New Method for Diagnosis of Broken Bars,’’ IEEE Transactions on Industrial Electronics, Vol. 56, No. 11, November 2009.
[9] Martin Blodt, Pierre Granjon, Bertrand Raison, and Gilles Rostaing, ‘‘Models for Bearing Damage Detection in Induction Motor Using Stator Current Monitoring,’’ IEEE Transactions on Industrial Electronics, Vol. 55, No. 4, April 2008.
[10] Zhenxing Liu, Xiaolong Zhang, Xianggen Yin, and Zhe Zhang, ‘‘On-Line Squirrel Cage Induction Motors’ Rotor Mixed Fault Diagnosis Approach Based on Spectrum Analysis of Instantaneous Power,’’ Proceedings of the 5th World Congress on Intelligent Control and Automation, June 2004.
[11] Bashir Mahdi Ebrahimi, Mehrsan Javan Roshtkhari, Jawad Faiz, and Seyed Vahid Khatami, ‘‘Advanced Eccentricity Fault Recognition in Permanent Magnet Synchronous Motors Using Stator Current Signature Analysis,’’ IEEE Transactions on Industrial Electronics, Vol. 61, No. 4, April 2014.
[12] R. Supangat, N. Ertugrul, W.L. Soong, D.A. Gray, C. Hansen and J. Grieger, ‘‘Detection of broken rotor bars in induction motor using starting-current analysis and effects of loading,’’ IET Journals & Magazines, Vol. 153, Issue 6, 2006.
[13] Ricardo Valles-Novo, Jose de Jesus Rangel-Magdaleno, Juan Manuel Ramirez-Cortes, Hayde Peregrina-Barreto, and Roberto Morales-Caporal, ‘‘Empirical Mode Decomposition Analysis for Broken-Bar Detection on Squirrel Cage Induction Motors,’’ IEEE Transactions on Instrumentation and Measurement, Vol. 64, No. 5, May 2015.
[14] Z. K. Peng, Peter W. Tse, and F. L. Chu, ‘‘A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing,’’ ELSEVIER Ltd., January 2004.
[15] Hubert Razik, Mauricio Beltrao de Rossiter Correa, and Edison Roberto Cabral da Silva, ‘‘A Novel Monitoring of Load Level and Broken Bar Fault Severity Applied to Squirrel-Cage Induction Motors Using a Genetic Algorithm,’’ IEEE Transactions on Industrial Electronics, Vol. 56, No. 11, November 2009.
[16] Cheng-Chien Kuo, Chien-Hsun Liu, Hong-Chan Chang, and Kuan-Jung Lin, ‘‘Implementation of a Motor Diagnosis System for Rotor Failure Using Genetic Algorithm and Fuzzy Classification,’’ Applied Sciences, July 2017.
[17] 謝政甫,「基於模糊法之感應電動機故障診斷與狀態監測系統」,碩士論文,國立臺灣科技大學,電機工程學系,2016年。
[18] X. Z. Gao, S. J. Ovaska and Y. Dote, ‘‘Motor Fault Detection Using Elman Neural Network with Genetic Algorithm-aided Training,’’ IEEE Conference Publications, Vol. 4, 2000.
[19] Liying Jiang, Xinxin Fu, Jianguo Cui, Zhonghai Li, ‘‘Rolling Element Bearing Fault Diagnosis Using Recursive Wavelet and SOM Neural Network,’’ IEEE Conference Publications, pp. 4691-4696, 2013.
[20] J. F. Martins, V. Fernao Pires, and A. J. Pires, ‘‘Unsupervised Neural-Network-Based Algorithnm for an On-Line Diagnosis of Three-Phase Induction Motor Stator Fault,’’ IEEE Transactions on Industrial Electronics, Vol. 54, No. 1, November 2007.
[21] N. Rama Devi, D. V. S. S. Siva Sarma, and P. V. Ramama Rao, ‘‘Diagnosis and Classification of Stator Winding Insulation Faults on a Three-phase Induction Motor using Wavelet and MNN,’’ IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 23, No. 5, October 2016.
[22] Jing Tian, Carlos Morillo, Michael H. Azarian, Member, and Michael Pecht, ‘‘Motor Bearing Fault Detection Using Spectral Kurtosis-Based Feature Extraction Coupled With K-Nearest Neighbor Distance Analysis,’’ IEEE Transactions on Industrial Electronics, Vol. 63, No. 3, March 2016.
[23] Ting Yang, Haibo Pen, Zhaoxia Wang, and Che Sau Chang, ‘‘Feature Knowledge Based Fault Detection of Induction Motors through the Analysis of Stator Current Data,’’ IEEE Transactions on Instrumentation and Measurement, Vol. 65, No. 3, May 2016.
[24] 徐子權,「電氣與振動檢測法於馬達狀態評估之研究」,碩士論文,國立臺灣科技大學,電機工程學系,2014年。
[25] Shun-Li Lu, Chin E. Lin, and Ching-Lien Huang, ‘‘Power frequency harmonic measurement using integer periodic extension method,’’ Elsevier Science S.A., Electric Power System Research, June 1998.
[26] 林上智,「基於模糊理論之旋轉電機故障診斷與狀態監測系統研究」,博士論文,國立臺灣科技大學,電機工程學系,2016年。
[27] Aapo Hyvarinen, and Erkki Oja, ‘‘Independent Component Analysis: Algorithm and Applications,’’ 2000.
[28] Aapo Hycarinen, Juha Karhunen, and Erkki Oja, ‘‘Independent Component Analysis,’’ March 2001.
[29] Xiadong Li, Qing Wu, and Subhasis Nandi, ‘‘Performance Analysis of a Three-Phase Induction Machine With Inclined Static Eccentricity,’’ IEEE Transactions on Industry Applications, Vol. 43, No. 2, March/April 2007.
[30] J. R. Cameron, and W.T. Thomson, ‘‘Vibration and current monitoring for detecting airgap eccentricity in large induction motors,’’ IEE Proceedings, Vol. 133, Pt. B, No. 3, May 1986.
[31] J. F. Bangura, and N.A. Demerdash, ‘‘Comparison Between Characterization and Diagnosis of Broken Bars/End-Ring Connectors and Airgap Eccentricities of Induction Motors in ASD’s Using a Coupled Finite Element-State Space Method,’’ IEEE Transactions on Energy Conversion, Vol. 15, No. 1, March 2000.
[32] 梁偉杰,「三相感應馬達氣隙偏心故障之檢測模擬」,碩士論文,國立臺灣科技大學,電機工程學系,2010年。
[33] Jawad Faiz, Bashir Mahdi Ebrahimi, and Hamid A. Toliyat, ‘‘Effect on Magnetic Saturation on Static and Mixed Eccentricity Fault Diagnosis in Induction Motor,’’ IEEE Transactions on Magnetics, Vol. 45, No. 8, August 2009.
[34] Bilal Akin, Seungdeog Choi, Umut Orguner, and Hamid A. Toliyat, ‘‘A Simple Real-Time Fault Signature Monitoring Tool for Motor-Drive-Embedded Fault Diagnosis Systems,’’ IEEE Transactions on Industrial Electronics, Vol. 58, No. 5, May 2011.
[35] Reemon Z. Haddad, Cristian A. Lopez, Joan Pons-Llinares, Jose Antonino-Daviu, and Elisa G. Strangeas, ‘‘Outer Race Bearing Fault Detection in Induction Machines Using Stator Current Signals,’’ IEEE Conference Publications, 2015.
[36] Jason R. Stack, Thomas G. Habetler, and Ronald G. Harley, ‘‘Fault Classification and Fault Signature Production for Rolling Element Bearings in Electric Machines,’’ IEEE Transactions on Industry Applications, Vol. 40, No. 3, May/June 2004.
[37] Gojko M. Joksimovic, and Jim Penman, ‘‘The Detection of Inter-Turn Short Circuits in the Stator Windings of Operating Motors,’’ IEEE Transactions on Industrial Electronics, Vol. 47, No. 5, October 2000.
[38] A. J. Marques Cardoso, S. M. A. Cruz, and D. S. B. Fonseca, ‘‘Inter-Turn Stator Winding Fault Diagnosis in Three-Phase Induction Motors, by Park’s Vector Approach,’’ IEEE Transactions on Energy Conversion, Vol. 14, No. 3, September 1999.
[39] Sergio M. A. Cruz, and A. J. Marques Cardoso, ‘‘Stator Winding Fault Diagnosis in Three-Phase Synchronous and Asychronous Motors, by the Extended Park’s Vector Approach,’’ IEEE Transactions on Industrial Applications, Vol. 37, No. 5, September/October 2001.
[40] Lingyan Lin, Ailiang Kang, Jiancheng Song, Zhipengn Lei, Yu Zhao , and Chen Feng, ‘‘Influences of Humidity and Temperature on Oil Contamination Discharge of HV Motor Stator Windings,’’ IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 23, No. 5, October 2016.
[41] Serge M. Tetrault, Gerg C. Stone, and Howard G. Sedding, ‘‘Monitoring Partial Discharges on 4-kV Motor Windings,’’ IEEE Transactions on Industrial Applications, Vol. 35, No. 3, May/June 1999.

無法下載圖示 全文公開日期 2022/07/17 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE