簡易檢索 / 詳目顯示

研究生: 李政頡
Cheng-Chieh Li
論文名稱: 使用傳統黃光微影製程製作新型主動層圖案化上接觸式有機薄膜電晶體之研究
Investigation of Top-Contact Organic Thin-Film Transistor with New Patterning Active Layer by Traditional Photolithography
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Chih-Chien Lee
林保宏
Pao-hung Lin
顏文正
none
王錫九
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 105
中文關鍵詞: 有機薄膜電晶體
外文關鍵詞: Organic Thin-Film Transistor
相關次數: 點閱:226下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

有機薄膜電晶體主要之兩種結構:上接觸式(TC)結構以及下接觸式(BC)結構,其中前者雖然因接觸電阻較小而有較好的元件特性,但是目前其以金屬遮罩製程為主流而在元件尺寸微縮以及大面積顯示器面板應用上不利。上接觸式結構乃先沉積主動層再沉積源極/汲極,且有機主動層易受化學酸鹼溶液影響,故無法直接以黃光微影方式直接在其上定義源極/汲極圖案,我們希望發展出能以黃光製程來製作上接觸式的有機薄膜電晶體,讓上接觸式(TC)結構亦能應用於元件尺寸微縮,以保持較好的元件特性同時仍有較高積體化密度、較大的平面顯示器之畫素開口率。
為了使有機薄膜電晶體在閘極關閉下有更好的off current,主動層的圖案化是不可避免的。然而主動層的圖案化現階段以金屬遮罩(metal shadow mask)製程方式為主,若要使單位面積下可放入更多電晶體以提高積體化密度,以黃光微影製程進行圖案化是必需要考慮的方法。
我們提出了一種新式的黃光微影製程製作主動層圖案化的方法。並且使用黃光微影製作出TC式有機薄膜電晶體,對其製作方式進行比較與分析,讓小尺寸的應用不再只是BC式結構的優勢,本研究從元件結構著手而改善元件特性,希望能夠作為有機薄膜電晶體領域發展的一個參考。


For organic thin-film transistor (OTFT), there are two common structures: Top-contact (TC) structure and Bottom-contact (BC) structure. The former has better electrical performance than that of the latter because of lower contact resistance. However, TC structure is usually fabricated by metal shadow mask process, and it has some issues for device scaling down and flat panel display (FPD) applications with large area. The TC structure is depositing the active layer before the deposition of source/drain (S/D) electrodes; the organic active layer is vulnerable to chemical solvents, so S/D electrodes cannot be directly patterned upon the organic active layer by using traditional photolithography. We hope to develop a novel S/D pattering scheme with compatibility of traditional photolithography, and fabricate OTFTs with TC structure and scaling down at the same time. Hence, it could obtain higher integration and higher aperture ratio of pixels for FPD without deteriorating the electrical performance of OTFT device.
To reduce the off current of OTFT when the gate is applied as off-state, patterning the organic active layer is inevitable. In addition, the organic active layer is also usually patterned by metal shadow mask process. If more OTFTs can be contained in same area to achieve the higher integration or higher aperture ratio of pixels for FPD, using photolithography process to pattern organic active layer is essential.
We propose a novel lithography process that can pattern the organic active layer and the S/D electrodes without deteriorating the electrical performance of OTFT. Its fabrication process is systematic analyzed. We hope the proposed scheme can be a candidate to fabricate OTFTs with high performance and high integration at the same time.

論文摘要 I 英文摘要 III 誌謝 V 圖目錄 IX 表目錄 XIII 第一章 概論 1 1.1 研究背景 1 1.2 研究動機與方向 2 1.3 論文大綱 3 第二章 有機薄膜電晶體介紹 5 2.1 有機半導體介紹 5 2.1.1 有機半導體材料概論 5 2.1.2 Pentacene材料特性介紹 7 2.2 有機半導體傳輸機制 8 2.2.1 Hopping Model [46-48] 8 2.2.2 Multiple Trapping and Release [49、50] 9 2.2.3 偏極子(Polaron)和雙偏極子(Bipolaron) [51] 10 2.3 有機薄膜電晶體結構 11 2.4 有機薄膜電晶體操作模式 12 2.5 參數萃取方式 14 2.5.1 載子移動率(Mobility, μ) 15 2.5.2 臨界電壓(Threshold Voltage, VTH) 16 2.5.3 次臨界斜率(Subthreshold Swing, S.S.) 17 2.5.4 開關電流比(On/Off Current Ratio, Ion/Ioff) 17 第三章 實驗方法與步驟 27 3.1 元件結構 27 3.2 製作流程 28 3.2.1 閘極(Gate) 28 3.2.2 閘極絕緣層(Gate Insulator Layer) 28 3.2.3 聚乙烯醇(Polyvinyl alcohol) PVA之製備 30 3.2.4 主動層(Active Layer) 30 3.2.5 源極/汲極(Source/Drain) 32 3.3 分析設備介紹及製程機台 35 第四章 黃光微影製作主動層圖案化與上接觸式有機薄膜電晶體 49 4.1 基礎有機薄膜電晶體製作與AFM分析 50 4.1.1閘極(Gate) 50 4.1.2 閘極絕緣層(Gate Insulator Layer) 50 4.1.3 主動層(Active Layer) 50 4.1.4 源極/汲極(Source/Drain) 51 4.1.5元件基本電特性介紹 51 4.2聚乙烯醇(PVA)對有機薄膜電晶體之影響與分析 52 4.2.1 PVA的調配與製作流程 52 4.2.2 PVA對於元件電特性之影響與分析 53 4.3 黃光微影製作主動層圖案化 54 4.3.1 黃光微影製作主動層圖案化製作流程 54 4.3.2 黃光微影製作主動層圖案化之AFM分析 56 4.3.3 黃光微影製作主動層圖案化之電性分析 57 4.4 黃光微影製作TC式有機薄膜電晶體 58 4.4.1 黃光微影製作TC式有機薄膜電晶體製作流程 59 4.4.2 黃光微影製作TC式有機薄膜電晶體之電性分析 60 4.5 黃光微影製作主動層圖案化之TC式有機薄膜電晶體 61 4.5.1 黃光微影製作主動層圖案化之TC式有機薄膜電晶體製作流程 62 4.5.2 黃光微影製作主動層圖案化之TC式有機薄膜電晶體電性分析 64 第五章 結論與未來展望 94 5.1 結論 94 5.2 未來工作與展望 96

[1] T. Ji, J. Xie, and V. K. Varadan, “Design of pentacene thin film transistors on flexible substrates,” Proceedings of SPIE, Vol. 5763, pp. 77-83, (2005).

[2] M. Zirkl, A. Haase, A. Fian, H. Schon, C. Sommer, G. Jakopic, G. Leising, B. Stadlober, I. Graz, N. Gaar, R. Schwodiauer, S. Bauer-Gogonea, S. Bauer, “Low-voltage organic thin-film transistor with high-k nanocomposite gate dielectrics for flexible electronics and optothermal sensors” Advanced Materials, Vol. 19, pp. 2241-2245, (2007).

[3] X. H. Zhang, S. P. Tiwari, S. J. Kim, and B. Kippelen, “Low-Voltage pentacene organic field-effect transistors with high-k HfO2 gate dielectrics and high stability under bias stress,” Applied Physics Letters, Vol. 95, pp. 223302, (2009).

[4] F. M. Li, A. Nathan, Y. Wu and B. S. Ong, “Organic thin-film transistor integration using silicon nitride gate dielectric,” Applied Physics Letters, 90, pp. 133514, (2007).

[5] S. H. Jeong, J. Nishii, H. R. Park, J. K. Kim, and B. T. Lee, “Influene of fluorine doping on SiOxFy films prepared from a TEOS/O2/CF4 mixture using a plasma enhanced chemical vapor deposition system,” Surface and Coating Technology, Vol. 168, pp. 51-56 , (2003).

[6] S. Kang, J. Park, S. Jung, H. J. Lee, P. Son, J. C. Kim, T. H. Yoon, and M. Yi, “Performance enhancement of organic thin-film transistors by low-energy argon ion beam treatment of gate dielectric surface,” Japanese Journal of Applied Physics, Vol. 46, No. 4B, pp. 2696-2699, (2007).

[7] D. J. Gundlach, L. Zhou, J. A. Nichols, and T. N. Jackson, “An experimental study of contact effects in organic thin film transistors,” Journal of Applied Physics, Vol. 100, pp. 024509, (2006).

[8] W. Kwon Kim, K. Hong, and J. L. Lee, “Enhancement of hole injection in pentacene organic thin-film transistor of O2 plasma-treated Au electrodes,” Applied Physics Letters, Vol. 89, pp. 142117, (2006).

[9] Dipti Gupta, M. Katiyar and Deepak, “Effect of pentacene thickness on organic thin film transistors: role of pentacene/insulator interface,” Proceeding of the 14th International workshop on physics of semiconductor devices, Mumbai, India, (2007).

[10] S. Pratontep, and M. Brinkmann, ”Correlated growth in ultrathin pentacene films on silicon oxide: Effect of deposition rate,” Physical Review B, Vol. 69, pp. 165201, (2004).

[11] B. T. Wu, Y. U. Su, M. L. Tu, An. C. Wang, Y. S. Chen, Y. Z. Chiou, Y. T. Chiou and C. H. Chu, “Interface modification in organic thin film transistors,” Japanese Journal of Applied physics, Vol. 44, No. 4B, pp. 2783-2768, (2006).

[12] M. McDowell, I. G. Hill, J. E. McDermott, S. L. Bernasek, and J. Schwartz, “Improved organic thin-film transistor performance using novel self-assembled monolayers,” Applied Physics Letters, Vol. 88, pp. 073505 (2006).

[13] K. Myny, S. D. Vusser, S. Steudel, D. Janssen, R. Muller, S. D. Jonge, S. Verlaak, J. Genoe, and P. Heremans, “Self-aligned surface treatment for thin-film organic transistors,” Applied Physics Letters, Vol. 88, pp. 222103, (2006).

[14] J. W. Lee, J. W. Chang, D. J. Kim, Y. S. Yoon, and J. K. Kim, “Performance improvement of organic thin-film transistors by electrode/pentacene interface treatment using a hydrogen plasma,” IEEE Electron Device Letters, Vol. 28, No. 5, (2007).

[15] C. K. Song, M. K. Jung, and B. W. Koo, “Pentacene thin film transistor improved by thermal annealing,” Journal of the Korean Physical Society, Vol. 39, pp. S271-S274, (2001).

[16] T. Ahn, H. Jung, H. J. Suk, M. H. Yi, “Effect of postfabrication thermal annealing on the electrical performance of pentacene organic thin-film transistors,” Synthetic Metals, Vol. 159, pp. 1277-1280, (2009).

[17] A.Tsumura, H. Koezuka, T. Ando, “Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film,” Applied Physics Letters, Vol. 49, pp, 1210, (1986).

[18] A. Assadi, C. Svensson, M. Willander, O. Ingans, “Field‐effect mobility of poly(3‐hexylthiophene),” Applied Physics Letters, Vol. 53. pp. 195, (1988).

[19] J. Paloheimo, E. Punkka, H. Stubb, P.Kuivalainen, in Lower Dimensional Systems and Molecular Devices, Proceedings of NATO ASI, Spetses, Greece (Ed: R. M. Mertzger), Plenum, New York, (1989).

[20] Z. Bao, A. Dodabalapur, A. J. Lovinger, “Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility,” Applied Physics Letters, Vol. 69, pp. 4108, (1996).

[21] H. Sirringhaus, N. Tessler, R. H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers,” Science, Vol. 280, pp. 1741-1744, (1998).

[22] F. Ebisawa, T. Kurokawa, S. Nara, “Electrical properties of polyacetylene/polysiloxane interface,” Journal of Applied Physics, Vol. 54, pp. 3255 , (1983).

[23] J. H. Burroughes, C. A. Jones, R. H. Friend, “New semiconductor device physics in polymer diodes and transistors ,” Nature, Vol. 335, pp. 137-141, (1988).

[24] H. Fuchigami, A. Tsumura, H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility,” Applied Physics Letters, Vol. 63, pp. 1372, (1993).

[25] F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, P. Alnot, “Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers,” Journal of the American Chemical Society, Vol. 115, pp. 8716, (1993).

[26] B.Servet, G. Horowitz, S. Ries, O. Lagorsse, P. Alnot, A. Yassar, F. Deloffre, P. Srivastava, R. Hajlaoui, P. Lang, F. Garnier, “Polymorphism and Charge Transport in Vacuum-Evaporated Sexithiophene Films,” Chemistry of Materials, Vol. 6, pp. 1809, (1994).

[27] A. Dodabalapur, L. Torsi, and H. E. Katz, “Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics,” Science, Vol. 268, pp. 270-271, (1995).

[28] C. D. Dimitrakopoulos, B. K. Furman, T. Graham, S. Hegde, and S. Purushothaman, "Field-Effect Transistors Comprising Molecular Beam Deposited α-ω-Di-hexyl-hexathienylene and Polymeric Insulators," Synthetic Metals, Vol. 92, pp. 47, (1998).

[29] H. E. Katz, L. Torsi, A. Dodabalapur, “Synthesis, Material Properties, and Transistor Performance of Highly Pure Thiophene Oligomers,” Chemistry of Materials, Vol. 7, pp. 2235-2237, (1995).

[30] R. Hajlaoui, D. Fichou, G. Horowitz, B. Nessakh, M. Constant, F. Garnier, “Organic transistors using -octithiophene and , -dihexyl- -octithiophene: Influence of oligomer length versus molecular ordering on mobility,” Advanced Material, Vol. 9, pp. 557-561, (1997).

[31] R. Hajlaoui, G. Horowitz, F. Garnier, A. Arce-Brouchet, L. Laigre, A. Elkassmi, F. Demanze, F. Kouki, “Improved field-effect mobility in short oligothiophenes: Quaterthiophene and quinquethiophene,” Advanced Material, Vol. 9, pp. 389-391, (1997).

[32] J. H. Schon, Ch. Kloc, B. Batlogg, “On the intrinsic limits of pentacene field-effect transistors,” Organic Electronics, Vol. 1, pp. 57-64, (2000).

[33] Y. -Y. Lin, D. J. Gundlach, S. Nelson, T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Letters, Vol. 18, pp. 606, (1997).

[34] C. D. Dimitrakopoulos, A. R. Brown, A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications,” Journal of Applied Physics, Vol. 80, pp. 2501, (1996).

[35] Y. Y. Lin, D. J. Gundlach, T. N. Jackson, “High Mobility Pentacene Organic Thin Film Transistors,” 54th Annual Device Research Conference Digest, New York, pp. 80, (1996).

[36] G. Horowitz, X. Peng, D. Fichou, F. Garnier, “Role of the emiconductor/insulator interface in the characteristics of π-conjugated-oligomer-based thin-film transistors ,” Synthetic Metals, Vol. 51, pp. 419-424, (1992).

[37] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, “C60 thin film transistors,” Applied Physics Letter, Vol. 67, pp. 121, (1995).

[38] J. Kastner, J. Paloheimo, and H. Kuzmany, in Solid State Sciences, edited by H. Kuzmany, M. Mehring, and J. Fink, Springer, New York, pp. 512–515, (1993).

[39] A. R. Brown, D. M. de Leeuw, E. J. Lous, E. E. Havinga, “Organic n-type field-effect transistor,” Synthetic Metals, Vol. 66, pp. 257, (1994).

[40] J. G. Laquindanum, H. E. Katz, A. Dodabalapur, A. J. Lovinger, “n-Channel Organic Transistor Materials Based on Naphthalene Frameworks,” Journal of the American Chemical Society, Vol. 118, pp. 11331-11332, (1996).

[41] G. Guillaud, M. Al Sadound, M. Maitrot, “Field-effect transistors based on intrinsic molecular semiconductors,” Chemical Physics Letters, Vol. 167, pp. 503, (1990).

[42] Z. Bao, A. J. Lovinger, J. Brown, “New Air-Stable n-Channel Organic Thin Film Transistors,” Journal of the American Chemical Society, Vol. 120, pp. 207, (1998).

[43] H. Fuchigami, A. Tsumura, H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility,” Applied Physics Letter, Vol. 63, pp. 1372, (1993).

[44] C. D. Dimitrakopoulos, and P. R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics,” Advanced Material, Vol. 14, pp. 99 -117, (2002).

[45] M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, and S.Forrest, “Organic Vapor Phase Deposition,” Advanced Material, Vol.10, pp.234-238, (1998).

[46] E. M. Conwell, “Impurity Band Conduction in Germanium and Silicon,” Physical Review Letters, Vol. 103, pp. 51-61, (1956).

[47] N. F. Mott, “ON THE TRANSITION TO METALLIC CONDUCTION IN SEMICONDUCTORS,” Canadian Journal of Physics. Vol. 34, pp. 1356, (1956).

[48] S. Locci, “Modeling of Physical and Electrical Characteristics of Organic Thin Film Transistors,” Ph.D dissertation, University of Cagliari, (2009).

[49] P. G. Le Comber, and W. E. Spear, “Electronic Transport in Amorphous Silicon Films,” Physical Review Letters, Vol. 25, pp. 509-511, (1970).

[50] 郭家瑋,「有機薄膜電晶體之載子傳輸特性研究」,博士論文,國立成功大學,台南 (2006).

[51] 倪偵翔,「可溶性有機薄膜電晶體材料之開發」,碩士論文,國立中央大學,桃園 (2006).

[52] R Ye, M. Baba, K. Suzuki, Y. Ohishi, K. Mori, “Effects of O2 and H2O in electrical characteristics of pentacene thin film transistors,” Thin Solid Films, Vol. 464-465, pp. 437-440, (2004).

[53] D. Kumaki, T. Umeda, and S. Tokito, “Influence of H2O and O2 on threshold voltage shift in organic thin-film transistors: Deposition of SiOH on SiO2 gate-insulator surface,” Applied Physics Letter, Vol. 92, pp. 093309, (2008).

[54] Y. H. Noh, Y. Park, S. M. Seo, and H. H. Lee, “Root cause of hysteresis in organic thin film transistor with polymer dielectric,” Organic Electronics, Vol. 7, pp. 271-275, (2006).

[55] Y. Roichman, and N. Tessler, “Structures of polymer field-effect transistor: Experimental and numerical analyses,” Applied Physics Letter, Vol. 80, pp. 151, (2002).

[56] I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, “High-Performance Bottom Electrode Organic Thin-Film Transistors,” IEEE Transactions on electron devices, Vol. 48, No. 6, (2001).

[57] G. B. Blanchet, C. R. Fincher, and M. Lefenfeld, “Contact resistance in organic thin film transistors,” Applied Physics Letters, Vol. 84, No. 2, (2004).

[58] S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, CH. 7, (1981).

[59] A. R. Brown, C. P. Jarrett, D. M. de Leeuw and M. Matters, “Field-eddect transistor made from solution-procceed organic semiconductors”, Synthetic Metals, Vol. 88, pp. 37-55, (1997).

[60] K. Fukuda, T. Yokota, K. Kuribara, T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, “Thermal stability of organic thin-film transistors with self-assembled monolayer dielectrics, “ Applied Physics Letters, Vol. 96, pp. 053302 (2010).

[61] Ahn, Taek, et al. “Extended lifetime of pentacene thin-film transistor with polyvinyl alcohol (PVA)/layered silicate nanocomposite passivation layer.” Microelectronic Engineering, Vol. 86, pp. 41-46, (2009).

[62] Wu, G. M., et al. “Preparation and characterization of pentacene-based organic thin-film transistors with PVA passivation layers.” Thin Solid Films, Vol. 517.17, pp. 5318-5321, (2009).

[63] Hyung, Gun Woo, et al. “Storage stability improvement of pentacene thin-film transistors using polyimide passivation layer fabricated by vapor deposition polymerization.” Solid-State Electronics, Vol. 54, pp. 439-442, (2010).

[64] S. D. Vusser, S. Steudel, K. Myny, J. Genoe, and P. Heremans, “Integrated shadow mask method for patterning small molecule organic semiconductors, “ Applied Physics Letters, Vol. 88, 103501, (2004).

[65] Y. Zhou, S. T. Han, Z. X. Xu, X. B. Yang, H. P. Ng, L. B. Huang, and V. A. L. Roy, J. Mater. Chem., vol. 22, no. 28, pp. 14246-14253, 2012.

[66] L. A. Majewski, R. Schroeder, and M. Grell, Adv. Funct. Mater., vol. 15, no. 6, pp. 1017-1022, 2005

[67] Han, Seung Hoon, et al. “Lifetime of organic thin-film transistors with organic passivation layers.” Applied physics letters, Vol. 88. pp. 073519, (2006).

[68] S. D. Vusser, S. Steudel, K. Myny, J. Genoe, and P. Heremans, “Integrated shadow mask method for patterning small molecule organic semiconductors, “ Applied Physics Letters, Vol. 88, 103501, (2004).

[69] Kuo, C-C., and Thomas N. Jackson. “Direct lithographic top contacts for pentacene organic thin-film transistors.” Applied Physics Letters, Vol. 94, pp. 053304, (2009).

[70] Ching-Lin Fan, Ping-Cheng Chiu, Yu-Zuo Lin, et al. “Investigation on the electrical characteristics of a pentacene thin-film transistor and its reliability under positive drain bias stress.” Semicond. Sci. Technol,. Vol. 26 125007, (2011)

無法下載圖示 全文公開日期 2018/07/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE