簡易檢索 / 詳目顯示

研究生: 陳俞臻
Yu-Chen Chen
論文名稱: 超聲介導微氣泡穴蝕效應促進人類皮膚細胞通透性增強的分子機制
The molecular mechanism of ultrasound-mediated microbubble cavitation on enhancing the permeability of human skin cells
指導教授: 廖愛禾
Ai-Ho Liao
口試委員: 王正康
Jehng-Kang Wang
莊賀喬
Ho-Chiao Chuang
沈哲州
Che-Chou Shen
王智弘
Chih-Hung Wang
廖愛禾
Ai-Ho Liao
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 111
中文關鍵詞: 超音波白蛋白微氣泡皮膚穴蝕效應絲胺酸蛋白酶非侵入性
外文關鍵詞: ultrasound, microbubble, skin, cavitation, matriptase, non-invasive
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,超音波在生物醫學應用上有廣泛研究,如應用於腫瘤治療 (tumor therapy)、血腦屏障破壞 (disruption of blood-brain barrier)、經皮給藥 (Transdermal Drug Delivery, TDD)等。超音波結合微氣泡之穴蝕效應 (US-MB),已被證實可以改變皮膚通透度,進而增強經皮給藥效果。
首先,在本研究先探討了超音波(US)結合微氣泡(MBs)對於matriptase之影響。matriptase又屬於第二型穿膜絲胺酸蛋白酶 (Type Ⅱ Transmembrane Serine Protease, TTSP),和Prostasin在表皮的發育、分化、屏障和傷口癒合扮演重要的角色,而且matriptase受其抑制蛋白:肝細胞生長因子活化酶抑制蛋白type Ⅰ (hepatocyte growth factor activator inhibitor type Ⅰ, HAI-1) 調節。根據西方墨點法(western blotting)實驗結果,於角質細胞HaCaT中看到在120 kDa形成matriptase-HAI-1的複合體,證明US-MB成功打開細胞間隙活化matriptase;在免疫細胞染色 (Immunocytochemistry, ICC) 結果中也可以直接證明超音波介導微氣泡穴蝕效應確實可以有效地促進人類皮膚細胞通透性。
進一步於 ex vivo 人類皮膚實驗結果中,因超音波具有安全性、非侵入性 (non-invasive) 特點,其皮膚組織在進行超音波結合微氣泡實驗後,無任何受損或是水泡產生,並且其細胞間距離約在12小時後可以復原跟剛施打超音波時相同。在蘇木紫與伊紅染色 (Hematoxylin & Eosin stain, H&E stain) 結果中看到US-MB可以將人體皮膚中之角質層掀開,有效地打開皮膚通透度。另外,在本研究發現,在條件:3 W/cm2, 1min, 3 times +MBs下,能量可以從角質層穿到至基底層,於免疫組織染色 (Immunohistochemistry, IHC) 結果中,在0小時之基底層中觀察到活化態matriptase產生,並且隨著時間增加到3小時,其活化態matriptase,由基底層向上延伸至顆粒層,於6小時和12小時下都還有觀察到活化態matriptase存在,而在6小時左右活化態matriptase表現低於3小時,主要是因為HAI-1會抑制matriptase的活化;施打完超音波後於0小時可以發現 prostasin的表現範圍開始往下延伸至棘狀層細胞質中或細胞膜上,並隨著時間增加至3小時於表皮層中的顆粒層表現更加明顯,至6小時亦在棘狀層細胞質中或細胞膜上可以觀察其存在。
由實驗結果看來US-MB扮演重要的角色在matriptase活化機制中。另一方面,其增加反應時間也能提升活化態的matriptase蛋白表現。US-MB可以成功開啟人類皮膚細胞通透性,提升皮膚通透度,對於發展非侵入性之經皮給藥有很大的潛力。


Recently, ultrasound has been widely studied in biomedical applications, such as tumor therapy, blood-brain barrier destruction, transdermal drug delivery (TDD). Ultrasound (US) mediated microbubbles (MBs) cavitation has been confirmed to change the skin permeability, thereby significantly enhancing the effect of TDD.
In this thesis, the role of matriptase activity for US mediated MBs cavitation (US-MB) enhanced TDD was demonstrated. The membrane-associated serine protease matriptase regulated by its inhibitor hepatocyte growth factor activator inhibitor (HAI-1) and prostasin, playing a major role in the development, differentiation, skin barrier and wound healing of the epidermis.
According to our results, western blotting showed a 120 kDa complex of matriptase-HAI-1 in immortalized human keratinocytes cell (HaCaT), proving that US+MBs successfully changed the structure of cell-cell junctions to activate matriptase; US-MB improved skin permeability and reduced thermal effects in immunocytochemistry results.
Furthermore, in the results of ex vivo human skin experiments, since the characteristics of ultrasound are safe and non-invasive, the skin tissue was not damaged or blistered after US-MB experiment. The distances between the cells after US-MB are increased and recovered after 12 hours.
Hematoxylin & Eosin stain result indicated that the structure of stratum corneum has been lifted and effectively opened the skin permeability. In addition, the optimal US-MB parameter is 3 W/cm2, 1 min, 3 times + MBs (total 3 times of US-MB, each time is 1 min). Under this condition, the response of matriptase-HAI-1 from the stratum corneum to the basal layer can be observed significantly.
In immunohistochemistry, the activated matriptase was observed in the basal layer, and prolonged to 3 hours. At 3th hour, the activated matriptase extended from the basal layer to the granular layer. Besides the 6 and 12 hours, the presence of activated matriptase was still observed. The amount of activated matriptase decreased at 6th hour because mainly activated matriptase was inhibited by HAI-1; prostasin expression was observed in the epidermal granular layer to spinous layer and became more obvious in granular layer at the 3th hour. Prostasin was also detected in the cytoplasm or on the cell membrane at the 6th hour.
In this thesis, the result suggests an important role for US-MB regulates the activation mechanism of matriptase. On the other hand, increasing the times of US-MB can also enhance the expression of activated matriptase protein. The permeability of human skin cells skin can be successfully increased by US-MB which is a great potential method for non-invasive TDD in human.

中文摘要 i ABSTRACT iii 圖目錄 ix 表目錄 xii 第1章、 緒論 1 1.1 皮膚 1 1.1.1 皮膚組織構造 1 1.1.2 皮膚屏障:表皮層之分層 4 1.2 超音波傳輸機制 6 1.2.1 超音波簡介 (Ultrasound) 6 1.2.2 醫用超音波簡介 7 1.2.3 超音波結合微氣泡於皮膚之應用 8 1.3 超音波微氣泡對比劑與應用 9 1.4 穴蝕效應 (Cavitation) 11 1.4.1 穩態穴蝕效應 (Stable cavitation) 12 1.4.2 慣性穴蝕效應 (Inertial cavitation) 12 1.5 matriptase 13 1.5.1 蛋白質水解酶 (protease) 13 1.5.2 絲胺酸蛋白酶 (serine protease) 14 1.5.3 matriptase 的發現 15 1.5.4 matriptase 的結構 16 1.5.5 matriptase 的分佈與生理功能 17 1.6 Prostasin 18 1.6.1 prostasin 的發現 18 1.6.2 prostasin 的結構與活化 19 1.6.3 prostasin 的分布與功能 19 1.7 Hepatocyte growth factor activator inhibitor-1(HAI-1) 19 1.7.1 HAI-1的發現 20 1.7.2 HAI-1的結構 20 1.7.3 HAI-1的分佈與功能 21 1.8 matriptase與 HAI-1 22 1.8.1 matriptase的活化 22 1.8.2 matriptase可能的活化機制 24 1.8.3 matriptase與 HAI-1的平衡 24 1.9 研究動機 25 第2章、 實驗材料與方法 26 2.1 研究架構 26 2.2 藥品與設備 27 2.2.1 藥品與試劑 27 2.2.2 套裝實驗組 28 2.2.3 抗體 29 2.2.4 實驗耗材 29 2.2.5 實驗設備 30 2.3 無菌白蛋白微氣泡製作 32 2.4 無菌白蛋白微氣泡性質分析 33 2.4.1 粒徑分析 33 2.4.2 電位分析 34 2.4.3 濃度量測 34 2.5 白蛋白微氣泡對比劑影像系統分析 36 2.6 皮膚超音波導入系統 37 2.6.1 溫度檢測 37 2.6.2 3D列印灌流區 38 2.7 體外細胞實驗 39 2.7.1 細胞株及細胞繼代 39 2.7.2 細胞計數 40 2.7.3 凍細胞及解凍細胞 41 2.7.4 免疫細胞染色 (Immunocytochemistry, ICC) 42 2.7.5 封片與細胞拍照 44 2.7.6 細胞蛋白萃取 45 2.7.7 西方墨點法 (Western blotting) 45 2.8 活體皮膚實驗 47 2.8.1 人類皮膚組織活體體外實驗 (ex vivo experiment) 47 2.8.2 皮膚實驗設計組別 48 2.8.3 檢體處理 49 2.8.4 冷凍切片 (Frozen section) 50 2.8.5 免疫組織染色 (Immunohistochemistry, IHC) 51 2.8.6 蘇木紫與伊紅染色 (Hematoxylin & Eosin stain, HE stain) 52 2.8.7 封片與組織拍照 53 2.8.8 免疫組織螢光染色 (Immunofluorescence, IF) 53 2.8.9 降低自體螢光法 55 2.9 ImageJ分析 55 2.10 統計分析 56 2.11 實驗道德倫理聲明 (ethics statement) 56 第3章、 實驗結果 57 3.1 無菌白蛋白微氣泡性質分析 57 3.1.1 粒徑分析 57 3.1.2 電位分析 57 3.1.3 濃度量測 58 3.2 高頻超音波影像系統之超音波能量打破效率參數分析 59 3.3 皮膚超音波導入系統 61 3.3.1 溫度檢測 61 3.3.2 3D列印灌流區 61 3.4 體外細胞實驗 63 3.4.1 西方墨點法─超音波與微氣泡作用於細胞之確效實驗 63 3.4.2 超音波作用於免疫細胞化學染色(Immunocytochemistry, ICC) 64 3.5 體外活體皮膚實驗(ex vivo experiment) 65 3.5.1 蘇木紫與伊紅染色(Hematoxylin & Eosin stain, HE stain) 65 3.5.2 免疫組織化學染色(Immunohistochemistry, IHC) 68 3.5.3 免疫組織螢光染色(Immunofluorescence, IF) 72 第4章、 補充資料 75 4.1 相同能量於0-12小時下不同施打次數於人體皮膚組織之蛋白質變化 75 4.1.1 活體皮膚組織於0-12小時於超音波結合微氣泡3 W/cm2 1分鐘施打一次作用的蛋白質之變化 75 4.1.2 活體皮膚組織於0-12小時於超音波結合微氣泡3 W/cm2 分鐘施打二次作用的蛋白質之變化 76 4.1.3 比較活體皮膚組織於0-12小時於單純超音波3 W/cm2 1分鐘施打一次作用的蛋白質之變化 78 4.1.4 比較活體皮膚組織於0-12小時於單純超音波3 W/cm2 1分鐘施打三次作用的蛋白質之變化 79 第5章、 討論 81 第6章、 結論 86 參考文獻 87

1. Baroni, A., et al., Structure and function of the epidermis related to barrier properties. Clinics in Dermatology, 2012. 30(3): p. 257-262.
2. Rosso, J.D., et al., Understanding the Epidermal Barrier in Healthy and Compromised Skin: Clinically Relevant Information for the Dermatology Practitioner: Proceedings of an Expert Panel Roundtable Meeting. J Clin Aesthet Dermatol, 2016. 9(4 Suppl 1): p. S2-s8.
3. Choi, E.H., Aging of the skin barrier. Clinics in Dermatology, 2019. 37(4): p. 336-345.
4. Winslow, T., Skin Anatomy. National Cancer Institute. Available from:https://visualsonline.cancer.gov/details.cfm?imageid=7280
5. Jiang, S., et al., The regional distribution of melanosomes in the epidermis affords a localized intensive photoprotection for basal keratinocyte stem cells. Journal of Dermatological Science, 2021.
6. Garcia-Vega, L., et al., Connexins and the Epithelial Tissue Barrier: A Focus on Connexin 26. Biology, 2021. 10(1): p. 59.
7. Piipponen, M., D. Li, and N.X. Landén, The Immune Functions of Keratinocytes in Skin Wound Healing. Int J Mol Sci, 2020. 21(22).
8. Yousef, H., M. Alhajj, and S. Sharma, Anatomy, Skin (Integument), Epidermis. 2020: StatPearls Publishing, Treasure Island (FL).
9. Kalluri, R., Basement membranes: structure, assembly and role in tumour angiogenesis. Nature Reviews Cancer, 2003. 3(6): p. 422-433.
10. Ciarletta, P. and M. Ben Amar, Papillary networks in the dermal–epidermal junction of skin: A biomechanical model. Mechanics Research Communications, 2012. 42: p. 68-76.
11. Ita, K., Chapter 2 - Anatomy of the human skin, in Transdermal Drug Delivery, K. Ita, Editor. 2020, Academic Press. p. 9-18.
12. Mine, S., et al., Aging alters functionally human dermal papillary fibroblasts but not reticular fibroblasts: a new view of skin morphogenesis and aging. PLoS One, 2008. 3(12): p. e4066.
13. Lai-Cheong, J.E. and J.A. McGrath, Structure and function of skin, hair and nails. Medicine, 2017. 45(6): p. 347-351.
14. Panakova, L. and K. Szalai, Surface, Barrier, and Interface Zone: Comparative Aspects of the Skin, in Comparative Medicine: Anatomy and Physiology, E. Jensen-Jarolim, Editor. 2014, Springer Vienna: Vienna. p. 103-117.
15. Lawton, S., Skin 1: The structure and functions of the skin. Nurs. Times, 2019. 115: p. 30-33.
16. Wertz, P., Epidermal Lamellar Granules. Skin Pharmacol Physiol, 2018. 31(5): p. 262-268.
17. Arda, O., N. Göksügür, and Y. Tüzün, Basic histological structure and functions of facial skin. Clinics in Dermatology, 2014. 32(1): p. 3-13.
18. Herwadkar, A. and A.K. Banga, Chapter 4 - Transdermal Delivery of Peptides and Proteins, in Peptide and Protein Delivery, C. Van Der Walle, Editor. 2011, Academic Press: Boston. p. 69-86.
19. Kasaai, M.R., Input power-mechanism relationship for ultrasonic irradiation: Food and polymer applications. 2013.
20. Reddy, U.M., R.A. Filly, and J.A. Copel, Prenatal imaging: ultrasonography and magnetic resonance imaging. Obstetrics and gynecology, 2008. 112(1): p. 145.
21. Noble, J.A. and D. Boukerroui, Ultrasound image segmentation: a survey. IEEE Transactions on medical imaging, 2006. 25(8): p. 987-1010.
22. Maresca, D., et al., Biomolecular Ultrasound and Sonogenetics. Annu Rev Chem Biomol Eng, 2018. 9: p. 229-252.
23. Rutkowska, M., J. Namieśnik, and P. Konieczka, Chapter 10 - Ultrasound-Assisted Extraction, in The Application of Green Solvents in Separation Processes, F. Pena-Pereira and M. Tobiszewski, Editors. 2017, Elsevier. p. 301-324.
24. Szabo, T.L., Diagnostic ultrasound imaging: inside out. 2004: Academic press.
25. Dietrich, C.F., et al., MEDICAL STUDENT ULTRASOUND EDUCATION: A WFUMB POSITION PAPER, PART I. Ultrasound in Medicine and Biology, 2019. 45(2): p. 271-281.
26. Mason, T.J., Therapeutic ultrasound an overview. Ultrasonics Sonochemistry, 2011. 18(4): p. 847-852.
27. Escoffre, J.M., et al., Bubble-Assisted Ultrasound: Application in Immunotherapy and Vaccination, in Therapeutic Ultrasound, J.M. Escoffre and A. Bouakaz, Editors. 2016. p. 243-261.
28. Wortsman, X., Practical Applications of Ultrasound in Dermatology. Clinics in Dermatology, 2021.
29. Akhtar, N., et al., Non-invasive drug delivery technology: development and current status of transdermal drug delivery devices, techniques and biomedical applications. Biomedical Engineering-Biomedizinische Technik, 2020. 65(3): p. 243-272.
30. Esmaeili, J., et al., Integration of microbubbles with biomaterials in tissue engineering for pharmaceutical purposes. Heliyon, 2020. 6(6): p. e04189.
31. Versluis, M., et al., Ultrasound Contrast Agent Modeling: A Review. Ultrasound in Medicine & Biology, 2020. 46(9): p. 2117-2144.
32. Khan, M.S., et al., Oxygen-carrying micro/nanobubbles: Composition, synthesis techniques and potential prospects in photo-triggered theranostics. Molecules, 2018. 23(9): p. 2210.
33. Dastgheyb, S.S. and J.R. Eisenbrey, 11 - Microbubble Applications in Biomedicine, in Handbook of Polymer Applications in Medicine and Medical Devices, K. Modjarrad and S. Ebnesajjad, Editors. 2014, William Andrew Publishing: Oxford. p. 253-277.
34. Unger, E.C., et al., Therapeutic applications of lipid-coated microbubbles. Advanced Drug Delivery Reviews, 2004. 56(9): p. 1291-1314.
35. Hernot, S. and A.L. Klibanov, Microbubbles in ultrasound-triggered drug and gene delivery. Advanced drug delivery reviews, 2008. 60(10): p. 1153-1166.
36. Tinkov, S., et al., Microbubbles as ultrasound triggered drug carriers. J Pharm Sci, 2009. 98(6): p. 1935-61.
37. Dijkmans, P., et al., Microbubbles and ultrasound: from diagnosis to therapy. European Journal of Echocardiography, 2004. 5(4): p. 245-246.
38. Sirsi, S.R. and M.A. Borden, Advances in Ultrasound Mediated Gene Therapy Using Microbubble Contrast Agents. Theranostics, 2012. 2(12): p. 1208-1222.
39. Ibsen, S., C.E. Schutt, and S. Esener, Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment. Drug design, development and therapy, 2013. 7: p. 375.
40. Gevari, M.T., et al., Direct and indirect thermal applications of hydrodynamic and acoustic cavitation: A review. Applied Thermal Engineering, 2020. 171: p. 115065.
41. Izadifar, Z., P. Babyn, and D. Chapman, Ultrasound cavitation/microbubble detection and medical applications. Journal of Medical and Biological Engineering, 2019. 39(3): p. 259-276.
42. Lentacker, I., S.C. De Smedt, and N.N. Sanders, Drug loaded microbubble design for ultrasound triggered delivery. Soft Matter, 2009. 5(11): p. 2161-2170.
43. Deprez, J., et al., Opening doors with ultrasound and microbubbles: Beating biological barriers to promote drug delivery. Advanced Drug Delivery Reviews, 2021. 172: p. 9-36.
44. Forbes, M.M., R.L. Steinberg, and W.D. O'Brien, Jr., Examination of inertial cavitation of Optison in producing sonoporation of chinese hamster ovary cells. Ultrasound Med Biol, 2008. 34(12): p. 2009-18.
45. Meng, L., et al., Sonoporation of cells by a parallel stable cavitation microbubble array. Advanced Science, 2019. 6(17): p. 1900557.
46. Luan, Y., et al. Characterizing ultrasound-controlled drug release by high-speed fluorescence imaging. in 2012 IEEE International Ultrasonics Symposium. 2012. IEEE.
47. Qin, P., et al., Mechanistic understanding the bioeffects of ultrasound-driven microbubbles to enhance macromolecule delivery. Journal of Controlled Release, 2018. 272: p. 169-181.
48. Zhao, Y.-Z., et al., Potential and problems in ultrasound-responsive drug delivery systems. International journal of nanomedicine, 2013. 8: p. 1621-1633.
49. Rao, M.B., et al., Molecular and biotechnological aspects of microbial proteases. Microbiology and molecular biology reviews, 1998. 62(3): p. 597-635.
50. Rawlings, N.D., D.P. Tolle, and A.J. Barrett, MEROPS: the peptidase database. Nucleic acids research, 2004. 32(suppl_1): p. D160-D164.
51. Chou, K.-C., A.G. Tomasselli, and R.L. Heinrikson, Prediction of the tertiary structure of a caspase-9/inhibitor complex. FEBS letters, 2000. 470(3): p. 249-256.
52. Chou, K.-C., D.-Q. Wei, and W.-Z. Zhong, Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochemical and biophysical research communications, 2003. 308(1): p. 148-151.
53. Rawlings, N.D. and A.J. Barrett, Evolutionary families of peptidases. Biochem J, 1993. 290 ( Pt 1)(Pt 1): p. 205-18.
54. Almonte, A.G. and J.D. Sweatt, Serine proteases, serine protease inhibitors, and protease-activated receptors: Roles in synaptic function and behavior. Brain Research, 2011. 1407: p. 107-122.
55. Ovaere, P., et al., The emerging roles of serine protease cascades in the epidermis. Trends Biochem Sci, 2009. 34(9): p. 453-63.
56. Shi, Y.E., et al., Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res, 1993. 53(6): p. 1409-15.
57. List, K., T.H. Bugge, and R. Szabo, Matriptase: potent proteolysis on the cell surface. Molecular medicine (Cambridge, Mass.), 2006. 12(1-3): p. 1-7.
58. Lin, C.Y., et al., Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J Biol Chem, 1999. 274(26): p. 18231-6.
59. Lin, C.Y., et al., Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk. J Biol Chem, 1999. 274(26): p. 18237-42.
60. Cao, J., et al., Characterization of colorectal-cancer-related cDNA clones obtained by subtractive hybridization screening. J Cancer Res Clin Oncol, 1997. 123(8): p. 447-51.
61. Antalis, T.M., et al., The cutting edge: membrane-anchored serine protease activities in the pericellular microenvironment. The Biochemical journal, 2010. 428(3): p. 325-346.
62. Lin, C.Y., et al., Zymogen activation, inhibition, and ectodomain shedding of matriptase. Front Biosci, 2008. 13: p. 621-35.
63. Kim, C., et al., Filamin is essential for shedding of the transmembrane serine protease, epithin. EMBO reports, 2005. 6(11): p. 1045-1051.
64. Chen, C.-J., et al., Increased matriptase zymogen activation in inflammatory skin disorders. American journal of physiology. Cell physiology, 2011. 300(3): p. C406-C415.
65. Peters, D.E., et al., The membrane-anchored serine protease prostasin (CAP1/PRSS8) supports epidermal development and postnatal homeostasis independent of its enzymatic activity. J Biol Chem, 2014. 289(21): p. 14740-9.
66. Oberst, M.D., et al., Characterization of Matriptase Expression in Normal Human Tissues. Journal of Histochemistry & Cytochemistry, 2003. 51(8): p. 1017-1025.
67. List, K., et al., Delineation of matriptase protein expression by enzymatic gene trapping suggests diverging roles in barrier function, hair formation, and squamous cell carcinogenesis. The American journal of pathology, 2006. 168(5): p. 1513-1525.
68. List, K., et al., Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene, 2002. 21(23): p. 3765-3779.
69. List, K., et al., Loss of proteolytically processed filaggrin caused by epidermal deletion of Matriptase/MT-SP1. The Journal of cell biology, 2003. 163(4): p. 901-910.
70. Chen, C.Y., et al., Increased matriptase zymogen activation by UV irradiation protects keratinocyte from cell death. Journal of Dermatological Science, 2016. 83(1): p. 34-44.
71. Chen, Y.-W., et al., Matriptase regulates proliferation and early, but not terminal, differentiation of human keratinocytes. Journal of Investigative Dermatology, 2014. 134(2): p. 405-414.
72. Lee, S.L., R.B. Dickson, and C.Y. Lin, Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem, 2000. 275(47): p. 36720-5.
73. Lindner, G., et al., Involvement of hepatocyte growth factor/scatter factor and met receptor signaling in hair follicle morphogenesis and cycling. Faseb j, 2000. 14(2): p. 319-32.
74. Ronaghan, N.J., et al., The serine protease-mediated increase in intestinal epithelial barrier function is dependent on occludin and requires an intact tight junction. Am J Physiol Gastrointest Liver Physiol, 2016. 311(3): p. G466-79.
75. Kobayashi, T., et al., Trypsin-like arginine amidases including plasminogen and plasmin in human seminal plasma by affinity adsorption and elution. Arch Androl, 1992. 28(3): p. 165-70.
76. Yu, J.X., L. Chao, and J. Chao, Prostasin is a novel human serine proteinase from seminal fluid. Purification, tissue distribution, and localization in prostate gland. J Biol Chem, 1994. 269(29): p. 18843-8.
77. Yu, J.X., et al., Structure and chromosomal localization of the human prostasin (PRSS8) gene. Genomics, 1996. 32(3): p. 334-40.
78. Leyvraz, C., et al., The epidermal barrier function is dependent on the serine protease CAP1/Prss8. J Cell Biol, 2005. 170(3): p. 487-96.
79. Rickert, K.W., et al., Structure of Human Prostasin, a Target for the Regulation of Hypertension*. Journal of Biological Chemistry, 2008. 283(50): p. 34864-34872.
80. Yu, J.X., L. Chao, and J. Chao, Molecular cloning, tissue-specific expression, and cellular localization of human prostasin mRNA. J Biol Chem, 1995. 270(22): p. 13483-9.
81. Bruns, J.B., et al., Epithelial Na+ Channels Are Fully Activated by Furin- and Prostasin-dependent Release of an Inhibitory Peptide from the γ-Subunit*. Journal of Biological Chemistry, 2007. 282(9): p. 6153-6160.
82. Snyder, P.M., Minireview: Regulation of Epithelial Na+ Channel Trafficking. Endocrinology, 2005. 146(12): p. 5079-5085.
83. Lai, C.-H., et al., Matriptase and prostasin are expressed in human skin in an inverse trend over the course of differentiation and are targeted to different regions of the plasma membrane. Biology open, 2016. 5(10): p. 1380-1387.
84. Lee, S.P., et al., Tissue distribution and subcellular localizations determine in vivo functional relationship among prostasin, matriptase, HAI-1, and HAI-2 in human skin. PLoS One, 2018. 13(2): p. e0192632.
85. Tanimoto, H., et al., Ovarian tumor cells express a transmembrane serine protease: a potential candidate for early diagnosis and therapeutic intervention. Tumour Biol, 2001. 22(2): p. 104-14.
86. Mitchell, A.C., et al., Engineering a potent inhibitor of matriptase from the natural hepatocyte growth factor activator inhibitor type-1 (HAI-1) protein. Journal of Biological Chemistry, 2018. 293(14): p. 4969-4980.
87. Kataoka, H., et al., Distribution of hepatocyte growth factor activator inhibitor type 1 (HAI-1) in human tissues. Cellular surface localization of HAI-1 in simple columnar epithelium and its modulated expression in injured and regenerative tissues. J Histochem Cytochem, 1999. 47(5): p. 673-82.
88. Nagaike, K., et al., Defect of Hepatocyte Growth Factor Activator Inhibitor Type 1/Serine Protease Inhibitor, Kunitz Type 1 (Hai-1/Spint1) Leads to Ichthyosis-Like Condition and Abnormal Hair Development in Mice. The American Journal of Pathology, 2008. 173(5): p. 1464-1475.
89. Oberst, M.D., et al., The activation of matriptase requires its noncatalytic domains, serine protease domain, and its cognate inhibitor. Journal of Biological Chemistry, 2003. 278(29): p. 26773-26779.
90. Tseng, C.-C., et al., Matriptase shedding is closely coupled with matriptase zymogen activation and requires de novo proteolytic cleavage likely involving its own activity. PloS one, 2017. 12(8): p. e0183507-e0183507.
91. Takeuchi, T., et al., Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. Journal of Biological Chemistry, 2000. 275(34): p. 26333-26342.
92. Förbs, D., et al., In vitro inhibition of matriptase prevents invasive growth of cell lines of prostate and colon carcinoma. International journal of oncology, 2005. 27(4): p. 1061-1070.
93. Benaud, C., et al., Sphingosine 1-Phosphate, Present in Serum-derived Lipoproteins, Activates Matriptase*. Journal of Biological Chemistry, 2002. 277(12): p. 10539-10546.
94. Wang, J.-K., et al., Matriptase autoactivation is tightly regulated by the cellular chemical environments. PloS one, 2014. 9(4): p. e93899-e93899.
95. Tseng, I.C., et al., Matriptase Activation, an Early Cellular Response to Acidosis*. Journal of Biological Chemistry, 2010. 285(5): p. 3261-3270.
96. Lin, C.-Y., et al., Chapter 649 - Matriptase, in Handbook of Proteolytic Enzymes (Third Edition), N.D. Rawlings and G. Salvesen, Editors. 2013, Academic Press. p. 2969-2975.
97. Oberst, M.D., et al., HAI-1 regulates activation and expression of matriptase, a membrane-bound serine protease. Am J Physiol Cell Physiol, 2005. 289(2): p. C462-70.
98. Zeng, L., J. Cao, and X. Zhang, Expression of serine protease SNC19/matriptase and its inhibitor hepatocyte growth factor activator inhibitor type 1 in normal and malignant tissues of gastrointestinal tract. World J Gastroenterol, 2005. 11(39): p. 6202-7.
99. Kang, J.Y., et al., Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res, 2003. 63(5): p. 1101-5.
100. Vogel, L.K., et al., The ratio of Matriptase/HAI-1 mRNA is higher in colorectal cancer adenomas and carcinomas than corresponding tissue from control individuals. BMC Cancer, 2006. 6: p. 176.
101. Riddick, A.C.P., et al., Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. British Journal of Cancer, 2005. 92(12): p. 2171-2180.
102. Jiang, L., et al., A supramolecular nanocarrier for efficient cancer imaging and therapy by targeting at matriptase. Journal of Controlled Release, 2021. 334: p. 153-163.
103. Huang, D., et al., Ballistic Brownian motion of supercavitating nanoparticles. Physical Review E, 2021. 103(4): p. 042104.
104. dos Santos, M.A.F. and L.M. Junior, Random diffusivity models for scaled Brownian motion. Chaos, Solitons & Fractals, 2021. 144: p. 110634.
105. Angstmann, C.N., B.I. Henry, and A.V. McGann, Time-fractional geometric Brownian motion from continuous time random walks. Physica A: Statistical Mechanics and its Applications, 2019. 526: p. 121002.
106. Abdelmalek, Z., et al., Brownian motion and thermophoretic diffusion influence on thermophysical aspects of electrically conducting viscoinelastic nanofluid flow over a stretched surface. Journal of Materials Research and Technology, 2020. 9(5): p. 11948-11957.
107. Arzenšek, D., R. Podgornik, and D. Kuzman. Dynamic light scattering and application to proteins in solutions. in Seminar; University of Ljubljana: Ljubljana, Slovenia. 2010.
108. Sizochenko, N., et al., Zeta potentials (ζ) of metal oxide nanoparticles: A meta-analysis of experimental data and a predictive neural networks modeling. NanoImpact, 2021. 22: p. 100317.
109. Cho, W.-S., et al., Zeta Potential and Solubility to Toxic Ions as Mechanisms of Lung Inflammation Caused by Metal/Metal Oxide Nanoparticles. Toxicological Sciences, 2012. 126(2): p. 469-477.
110. Polaczyk, A.L., et al., Calculation and uncertainty of zeta potentials of microorganisms in a 1:1 electrolyte with a conductivity similar to surface water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020. 586: p. 124097.
111. Zhang, W., et al., Microfluidic multiple cross-correlated Coulter counter for improved particle size analysis. Sensors and Actuators B: Chemical, 2019. 296: p. 126615.
112. Nasir, M., et al., Hydrodynamic focusing of conducting fluids for conductivity-based biosensors. Biosensors and Bioelectronics, 2010. 25(6): p. 1363-1369.
113. Emaminejad, S., et al., Portable cytometry using microscale electronic sensing. Sensors and Actuators B: Chemical, 2016. 224: p. 275-281.
114. Coulter counter. Available from: https://www.beckman.com/cell-counters-and-analyzers/multisizer-4e
115. Liao, A.H., et al., Minoxidil-Coated Lysozyme-Shelled Microbubbes Combined With Ultrasound for the Enhancement of Hair Follicle Growth: Efficacy In Vitro and In Vivo. Front Pharmacol, 2021. 12: p. 668754.
116. Sonitron GTS Sonoporation System.
Available from: http://www.nepagene.jp/e_products_nepagene_0012.html.
117. Speed, C.A., Therapeutic ultrasound in soft tissue lesions. Rheumatology, 2001. 40(12): p. 1331-1336.
118. Zou, Y., et al., Effect of different time of ultrasound treatment on physicochemical, thermal, and antioxidant properties of chicken plasma protein. Poultry Science, 2019. 98(4): p. 1925-1933.
119. Mwema, F.M. and E.T. Akinlabi, Basics of Fused Deposition Modelling (FDM), in Fused Deposition Modeling. 2020. p. 1-15.
120. Lay, M., et al., Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Composites Part B: Engineering, 2019. 176.
121. Wang, X., et al., 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 2017. 110: p. 442-458.
122. Deforce. Available from: https://www.3dprow.com/products/dforce-v4.
123. Seo, M.D., et al., HaCaT Keratinocytes and Primary Epidermal Keratinocytes Have Different Transcriptional Profiles of Cornified Envelope-Associated Genes to T Helper Cell Cytokines. Biomol Ther (Seoul), 2012. 20(2): p. 171-6.
124. Colombo, I., et al., HaCaT Cells as a Reliable In Vitro Differentiation Model to Dissect the Inflammatory/Repair Response of Human Keratinocytes. Mediators Inflamm, 2017. 2017: p. 7435621.
125. Leite, M.N., et al., Ex vivo model of human skin (hOSEC) for assessing the dermatokinetics of the anti-melanoma drug Dacarbazine. European Journal of Pharmaceutical Sciences, 2021. 160: p. 105769.
126. Liao, A.H., et al., Effectiveness of a Layer-by-Layer Microbubbles-Based Delivery System for Applying Minoxidil to Enhance Hair Growth. Theranostics, 2016. 6(6): p. 817-27.
127. Liao, A.H., et al., Treatment effects of lysozyme-shelled microbubbles and ultrasound in inflammatory skin disease. Sci Rep, 2017. 7: p. 41325.
128. Jensen, E.C., Quantitative Analysis of Histological Staining and Fluorescence Using ImageJ. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology, 2013. 296(3): p. 378-381.
129. Boucaud, A., et al., Clinical, histologic, and electron microscopy study of skin exposed to low-frequency ultrasound. Anat Rec, 2001. 264(1): p. 114-9.
130. Seah, B.C. and B.M. Teo, Recent advances in ultrasound-based transdermal drug delivery. Int J Nanomedicine, 2018. 13: p. 7749-7763.
131. Bhatnagar, S., et al., Exploitation of sub-micron cavitation nuclei to enhance ultrasound-mediated transdermal transport and penetration of vaccines. Journal of Controlled Release, 2016. 238: p. 22-30.
132. Datta, S., et al., Correlation of cavitation with ultrasound enhancement of thrombolysis. Ultrasound in Medicine and Biology, 2006. 32(8): p. 1257-1267.
133. Wang, J.K., et al., Matriptase Autoactivation Is Tightly Regulated by the Cellular Chemical Environments. Plos One, 2014. 9(4): p. 10.
134. Xu, X. and C. Sun, Ultrasound enhanced skin optical clearing: microstructural changes. Journal of Innovative Optical Health Sciences, 2010. 3(03): p. 189-194.
135. Chang, S.C., et al., Matriptase and prostasin proteolytic activities are differentially regulated in normal and wounded skin. Human Cell, 2020. 33(4): p. 990-1005.
136. Skovbjerg, S., et al., Inhibition of an active zymogen protease: the zymogen form of matriptase is regulated by HAI-1 and HAI-2. Biochemical Journal, 2020. 477(9): p. 1779-1794.
137. Shang, X., et al., Mechanism of low-frequency ultrasound in opening blood-tumor barrier by tight junction. J Mol Neurosci, 2011. 43(3): p. 364-9.
138. Sheikov, N., et al., Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol, 2008. 34(7): p. 1093-104.

無法下載圖示 全文公開日期 2026/08/13 (校內網路)
全文公開日期 2026/08/13 (校外網路)
全文公開日期 2026/08/13 (國家圖書館:臺灣博碩士論文系統)
QR CODE