簡易檢索 / 詳目顯示

研究生: 季琛
Chen Ji
論文名稱: 電感耦合電漿增強化學氣相沉積系統生長的單層二硫化鎢之材料特性分析
The Study for the Monolayer WS2 Grown by Inductively Coupled Plasma-Enhanced Chemical Vapor Deposition
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 周賢鎧
Shyankay Jou
章詠湟
Yung-Huang Chang
黃柏仁
Bohr-Ran Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 111
中文關鍵詞: 二維材料大面積成長單層二硫化鎢(WS2)
外文關鍵詞: 2D materials, transition metal dichalcogenide, ICPECVD
相關次數: 點閱:254下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

二維 (2D) 過渡金屬二硫屬化物 (TMDs) 已成為下一代納米電子學的有希望的候選者。然而,二維TMDs材料的大面積、高質量和優異穩定性的生長仍然是一個很大的挑戰。在這項工作中,我們提出了一種單步電感耦合電漿增強化學氣相沉積 (ICPECVD) 系統來製備二維單層 WS2。硫(S)和三氧化鎢(WO3)粉末用作 WS2 生長的固態源。PL 與拉曼技術確定ICPECVD合成之單層 WS2 的品質提高,載流子濃度上升。XPS技術用於分析生成物的元素組成,顯示合成單層WS2晶體的純度提高。TEM技術用於直觀地觀察電漿對於材料合成之晶體原子排列結構的影響。在這裡,我們提出了電漿下WS2單層膜的氣相沉積過程,並且重點考察ICPECVD製程中不同於一般CVD法的成長理論。
電漿的高活性極大促進合成反應的進行,我們成功在2" 藍寶石晶圓上成長WS2,並用拉曼技術確定其為單層均一的薄膜。並且在5*13 cm2的基板上沉積WS2薄膜,這是氣相合成法成長WS2薄膜中目前報道的最大尺寸。
然而,由於硫的離子化和電漿的蝕刻效應,過大的固態源蒸發量與電漿範圍會極大地抑制 WS2 在基材上的外延生長。這項工作為已建立的氣象合成技術提供了另一種途徑,並展示了 ICPECVD系統製備單層 WS2 薄膜的重要見解,有利於未來 2D 材料的應用與發展。


Two-dimensional (2D) transition metal dichalcogenides (TMDs) have become promising candidates for next-generation nanoelectronics. However, the growth of large area, high quality and excellent stability for 2D TMDs materials remains a big challenge. In this work, we present a single-step inductively coupled plasma-enhanced chemical vapor deposition (ICPECVD) system to synthesize the 2D monolayer WS2. S and WO3 powders were used as precursors for WS2 growth. The PL technique is used to identify the quality improvement of the monolayer WS2 film. The high activity of the inductively coupled plasma promotes the growth of the synthesis reaction. Therefore, the 5*13cm2 WS2 thin film was successfully synthesized, which is currently the uniform and largest area deposition reported by vapor phase technology. This work provides an efficient technique for enhancing the high quality monolayer WS2 film in large area by the ICPECVD, which is beneficial for future researches and applications in 2D materials.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻探討 4 2.1 二維材料成長的基本原理 4 2.1.1 二維材料成長之基材影響 4 2.1.2 二維材料成長之成核理論 5 2.1.3 二維材料成長之晶格取向 8 2.2 電漿技術 10 2.4.1 射頻電漿 11 2.4.2 微波電漿 12 2.4.3 直流電漿 13 2.3 單層二硫化鎢(WS2)之屬性 14 2.3.1 WS2的晶格結構 14 2.3.2 WS2的層相關能帶結構 15 2.4 單層二硫化鎢 (WS2)之合成 16 2.4.1 種子膜的硫化法 16 2.4.2 蒸汽源法 17 2.4.3 採用固態源的CVD法 19 2.5 單層二硫化鎢(WS2)之應用 21 2.5.1 場效應管 21 2.5.2 憶阻器 22 2.5.3 光電器件 23 第三章 實驗方法 25 3.1 實驗設計與流程 25 3.1.1 實驗流程圖 25 3.1.2 ICPECVD之系統結構 26 3.1.3 ICPECVD之射頻源設備 26 3.1.4 ICPECVD之製備二硫化鎢(WS2)成長 28 3.2 使用材料介紹 29 3.3 基板清洗 30 3.4 PMMA轉移法 30 3.6 儀器設備與材料分析方法 31 3.6.1 光學顯微鏡(Optical microscopes, OM) 31 3.6.2拉曼/光致螢光光譜儀(Raman/ Photoluminescence, PL) 33 3.6.3 X光電子能譜分析儀(X-ray photoelectron spectroscopy, XPS) 34 3.6.4 原子力顯微鏡(atomic force microscope, AFM) 35 3.6.5 高解析穿透式電子顯微鏡 (High Resolution Transmission Electron Microscope, HR-TEM) 36 3.6.6 能量發散光譜儀 (Energy Dispersive Spectroscopy, EDS) 38 第四章 二硫化鎢(WS2)之材料特性分析 39 4.1 ICPECVD製備單層WS2之優勢 39 4.1.1 CVD/ICPECVD成長單層WS2之表面形態分析 39 4.1.2 CVD/ICPECVD成長單層WS2之拉曼/光致螢光光譜分析 40 4.2 ICPECVD成長單層WS2之固態源濃度 43 4.2.1 硫蒸汽濃度對單層WS2成長影響 43 4.2.2 鎢前體濃度對單層WS2成長影響 46 4.3 ICPECVD成長單層WS2之成長速率 49 4.4 ICPECVD成長單層WS2之電漿範圍影響 51 4.5 ICPECVD成長單層WS2之成長演化 56 4.6 ICPECVD成長單層WS2之電漿功率影響 58 4.6.1 不同電漿功率下成長單層WS2表面型態分析 59 4.6.2 不同電漿功率下成長單層WS2拉曼/PL光譜儀分析 60 4.6.3 不同電漿功率下成長單層WS2二次諧波成像顯微鏡分析 62 4.6.4 不同電漿功率下成長單層WS2原子力顯微鏡分析 64 4.6.5 不同電漿功率下成長單層WS2 X光電子能譜分析儀分析 66 4.6.6 不同電漿功率下成長單層WS2場發射槍穿透式電子顯微鏡分析 70 4.6.7 不同電漿功率下成長單層WS2 EDS分析 71 4.7 ICPECVD成長單層WS2之低壓影響 72 4.7.1 5 Torr壓力下成長單層WS2表面型態分析 72 4.7.2 5 Torr壓力下成長單層WS2拉曼/PL光譜儀分析 73 4.7.3 5 Torr壓力下成長單層WS2 X光電子能譜分析儀分析 76 4.7.4 5 Torr壓力下成長單層WS2場發射槍穿透式電子顯微鏡分析 80 4.7.5 5 Torr壓力下成長單層WS2 EDS分析 81 4.8 ICPECVD成長單層WS2之成長模型 82 4.9 ICPECVD成長晶圓級WS2 薄膜 84 4.9.1 晶圓級單層WS2拉曼光譜儀分析 85 4.9.2 晶圓級單層WS2 PL分析 88 4.9.3 大面積(5*13 cm)WS2薄膜成長 89 4.10 ICPECVD成長單層WS2之制程穩定性 95 4.10.1 製程穩定性之 PL分析 95 4.10.2 製程穩定性之拉曼分析 97 4.11 ICPECVD成長單層WS2之電漿損傷 97 第五章 結論與未來展望 100 5.1 結論 100 5.2 未來展望 102 參考文獻 103

[1] L.Zhang, J.Dong, andF.Ding, “Strategies, Status, and Challenges in Wafer Scale Single Crystalline Two-Dimensional Materials Synthesis,” Chem. Rev., vol. 121, no. 11, pp. 6321–6372, Jun.2021.
[2] C.Gong, G.Lee, B.Shan, E. M.Vogel, R. M.Wallace, andK.Cho, “First-principles study of metal-graphene interfaces,” J. Appl. Phys., vol. 108, no. 12, Dec.2010.
[3] R.Koitz, A. P.Seitsonen, M.Iannuzzi, andJ.Hutter, “Structural and electronic properties of a large-scale Moiré pattern of hexagonal boron nitride on Cu(111) studied with density functional theory,” Nanoscale, vol. 5, no. 12, pp. 5589–5595, Jun.2013.
[4] G.Giovannetti, P. A.Khomyakov, G.Brocks, V. M.Karpan, J.Van DenBrink, andP. J.Kelly, “Doping graphene with metal contacts,” Phys. Rev. Lett., vol. 101, no. 2, Jul.2008.
[5] Y.Pan et al., “Highly Ordered, Millimeter-Scale, Continuous, Single-Crystalline Graphene Monolayer Formed on Ru (0001),” Adv. Mater., vol. 21, no. 27, p. n/a-n/a, Jul.2009.
[6] Q.Yuan, G.Song, D.Sun, andF.Ding, “Formation of graphene grain boundaries on Cu(100) surface and a route towards their elimination in chemical vapor deposition growth,” Sci. Rep., vol. 4, 2014.
[7] J. H.Lee et al., “Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium,” Science (80-. )., vol. 344, no. 6181, pp. 286–289, 2014.
[8] X.Xu et al., “Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil,” Sci. Bull., vol. 62, no. 15, pp. 1074–1080, Aug.2017.
[9] H.Shu, X. M.Tao, andF.Ding, “What are the active carbon species during graphene chemical vapor deposition growth?,” Nanoscale, vol. 7, no. 5, pp. 1627–1634, Feb.2015.
[10] J.Gao, Q.Yuan, H.Hu, J.Zhao, andF.Ding, “Formation of carbon clusters in the initial stage of chemical vapor deposition graphene growth on Ni(111) surface,” J. Phys. Chem. C, vol. 115, no. 36, pp. 17695–17703, Sep.2011.
[11] S.Liu, A. C. T.VanDuin, D. M.VanDuin, B.Liu, andJ. H.Edgar, “Atomistic Insights into Nucleation and Formation of Hexagonal Boron Nitride on Nickel from First-Principles-Based Reactive Molecular Dynamics Simulations,” ACS Nano, vol. 11, no. 4, pp. 3585–3596, Apr.2017.
[12] J.Gao, J.Yip, J.Zhao, B. I.Yakobson, andF.Ding, “Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge,” J. Am. Chem. Soc., vol. 133, no. 13, pp. 5009–5015, Apr.2011.
[13] R.Zhao, F.Li, Z.Liu, Z.Liu, andF.Ding, “The transition metal surface passivated edges of hexagonal boron nitride (h-BN) and the mechanism of h-BN’s chemical vapor deposition (CVD) growth,” Phys. Chem. Chem. Phys., vol. 17, no. 43, pp. 29327–29334, 2015.
[14] X.Zhang, Z.Xu, L.Hui, J.Xin, andF.Ding, “How the orientation of graphene is determined during chemical vapor deposition growth,” J. Phys. Chem. Lett., vol. 3, no. 19, pp. 2822–2827, 2012.
[15] X.Song et al., “Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation,” Nano Res., vol. 8, no. 10, pp. 3164–3176, 2015.
[16] P.Yang et al., “Epitaxial Growth of Centimeter-Scale Single-Crystal MoS2 Monolayer on Au(111),” ACS Nano, vol. 14, no. 4, pp. 5036–5045, Apr.2020.
[17] J.Dong, L.Zhang, X.Dai, andF.Ding, “The epitaxy of 2D materials growth,” Nat. Commun., vol. 11, no. 1, 2020.
[18] Z.Bo, Y.Yang, J.Chen, K.Yu, J.Yan, andK.Cen, “Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets,” Nanoscale, vol. 5, no. 12, p. 5180, 2013.
[19] “Physics of Radio-Frequency Plasmas - Pascal Chabert, Nicholas Braithwaite -图书.” [Online].
[20] K.Ostrikov, U.Cvelbar, andA. B.Murphy, “Plasma nanoscience: Setting directions, tackling grand challenges,” J. Phys. D. Appl. Phys., vol. 44, no. 17, May2011.
[21] K.Kobashi, K.Nishimura, Y.Kawate, andT.Horiuchi, “Synthesis of diamonds by use of microwave plasma chemical-vapor deposition: Morphology and growth of diamond films,” Phys. Rev. B, vol. 38, no. 6, pp. 4067–4084, 1988.
[22] A. T. H.Chuang, B. O.Boskovic, andJ.Robertson, “Freestanding carbon nanowalls by microwave plasma-enhanced chemical vapour deposition,” Diam. Relat. Mater., vol. 15, no. 4–8, pp. 1103–1106, Apr.2006.
[23] Y. H.Wu, T.Yu, andZ. X.Shen, “Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications,” J. Appl. Phys., vol. 108, no. 7, Oct.2010.
[24] C.Pettenkofer, A.Klein, W.Jaegermann, S.Tiefenbacher, andV.Eyert, “Electronic band structure of single-crystal and single-layer (formula presented) Influence of interlayer van der Waals interactions,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 64, no. 20, pp. 1–14, 2001.
[25] H.Zeng et al., “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep., vol. 3, no. 1, pp. 1–5, Apr.2013.
[26] J. G.Song et al., “Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition,” ACS Nano, vol. 7, no. 12, pp. 11333–11340, Dec.2013.
[27] A. L.Elías et al., “Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers,” ACS Nano, vol. 7, no. 6, pp. 5235–5242, Jun.2013.
[28] B.Groven et al., “Two-Dimensional Crystal Grain Size Tuning in WS2 Atomic Layer Deposition: An Insight in the Nucleation Mechanism,” Chem. Mater., vol. 30, no. 21, pp. 7648–7663, 2018.
[29] Y.Sheng, H.Tan, X.Wang, andJ. H.Warner, “Hydrogen Addition for Centimeter-Sized Monolayer Tungsten Disulfide Continuous Films by Ambient Pressure Chemical Vapor Deposition,” Chem. Mater., vol. 29, no. 11, pp. 4904–4911, 2017.
[30] C.Lan et al., “Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition,” Nano Res., vol. 11, no. 6, pp. 3371–3384, Jun.2018.
[31] K.Shimakawa, “Electrical transport properties,” World Sci. Ref. Amorph. Mater. Struct. Prop. Model. Main Appl. (In 3 Vol., no. 8, pp. 177–202, 2020.
[32] J.Jiang et al., “A Facile and Effective Method for Patching Sulfur Vacancies of WS2 via Nitrogen Plasma Treatment,” Small, vol. 15, no. 36, pp. 1–8, 2019.
[33] X.Yan et al., “Vacancy-Induced Synaptic Behavior in 2D WS2 Nanosheet–Based Memristor for Low-Power Neuromorphic Computing,” Small, vol. 15, no. 24, pp. 1–9, 2019.
[34] C.Lan, C.Li, Y.Yin, andY.Liu, “Large-area synthesis of monolayer WS 2 and its ambient-sensitive photo-detecting performance,” Nanoscale, vol. 7, no. 14, pp. 5974–5980, Mar.2015.
[35] Y.Xue et al., “Scalable production of a Few-Layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano, vol. 10, no. 1, pp. 573–580, Jan.2016.
[36] J.Shang et al., “Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor,” ACS Nano, vol. 9, no. 1, pp. 647–655, 2015.
[37] A.Chernikov et al., “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett., vol. 113, no. 7, pp. 1–5, 2014.
[38] A.Berkdemir et al., “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Reports 2013 31, vol. 3, no. 1, pp. 1–8, Apr.2013.
[39] H. M. W.Khalil, M. F.Khan, J.Eom, andH.Noh, “Highly Stable and Tunable Chemical Doping of Multilayer WS2 Field Effect Transistor: Reduction in Contact Resistance,” ACS Appl. Mater. Interfaces, vol. 7, no. 42, pp. 23589–23596, 2015.
[40] N.Peimyoo, W.Yang, J.Shang, X.Shen, Y.Wang, andT.Yu, “Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2,” ACS Nano, vol. 8, no. 11, pp. 11320–11329, 2014.
[41] A.Zafar et al., “Sulfur-Mastery: Precise Synthesis of 2D Transition Metal Dichalcogenides,” Adv. Funct. Mater., vol. 29, no. 27, pp. 1–8, 2019.
[42] Y.Rong et al., “Controlling sulphur precursor addition for large single crystal domains of WS2,” Nanoscale, vol. 6, no. 20, pp. 12096–12103, 2014.
[43] Y.Yue et al., “Two-Dimensional High-Quality Monolayered Triangular WS2 Flakes for Field-Effect Transistors,” ACS Appl. Mater. Interfaces, vol. 10, no. 26, pp. 22435–22444, 2018.
[44] I.Levchenko, M.Keidar, S.Xu, H.Kersten, andK. (Ken)Ostrikov, “Low-temperature plasmas in carbon nanostructure synthesis,” J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom., vol. 31, no. 5, p. 050801, 2013.
[45] Y. P.Chang et al., “Oxidation and Degradation of WS2Monolayers Grown by NaCl-Assisted Chemical Vapor Deposition: Mechanism and Prevention,” Nanoscale, vol. 13, no. 39, pp. 16629–16640, 2021.
[46] S.Jo et al., “Surface-diffusion-limited growth of atomically thin WS 2 crystals from core-shell nuclei,” Nanoscale, vol. 11, no. 18, pp. 8706–8714, 2019.
[47] J. D.Cain, F.Shi, J.Wu, andV. P.Dravid, “Growth Mechanism of Transition Metal Dichalcogenide Monolayers: The Role of Self-Seeding Fullerene Nuclei,” ACS Nano, vol. 10, no. 5, pp. 5440–5445, 2016.
[48] W.Yuan et al., “Structural Color Fibers Directly Drawn from Colloidal Suspensions with Controllable Optical Properties,” ACS Appl. Mater. Interfaces, vol. 11, no. 21, pp. 19388–19396, May2019.
[49] P. K.Chow et al., “Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates,” ACS Nano, vol. 9, no. 3, pp. 3023–3031, 2015.
[50] A. L.Elías et al., “Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers,” ACS Nano, vol. 7, no. 6, pp. 5235–5242, 2013.
[51] Z.Mutlu, M.Ozkan, andC. S.Ozkan, “Large area synthesis, characterization, and anisotropic etching of two dimensional tungsten disulfide films,” Mater. Chem. Phys., vol. 176, pp. 52–57, 2016.
[52] R.Xiao et al., “High Performance Van der Waals Graphene–WS2–Si Heterostructure Photodetector,” Adv. Mater. Interfaces, vol. 6, no. 24, pp. 1–7, 2019.
[53] N.Perea-Lõpez et al., “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater., vol. 23, no. 44, pp. 5511–5517, 2013.
[54] H.Guo, C.Lan, Z.Zhou, P.Sun, D.Wei, andC.Li, “Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin,” Nanoscale, vol. 9, no. 19, pp. 6246–6253, 2017.
[55] C.Lan et al., “Zener Tunneling and Photoresponse of a WS2/Si van der Waals Heterojunction,” ACS Appl. Mater. Interfaces, vol. 8, no. 28, pp. 18375–18382, 2016.
[56] C. M.Orofeo, S.Suzuki, Y.Sekine, andH.Hibino, “Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films,” Appl. Phys. Lett., vol. 105, no. 8, 2014.
[57] S.Hussain et al., “Layer-modulated, wafer scale and continuous ultra-thin WS2 films grown by RF sputtering: Via post-deposition annealing,” J. Mater. Chem. C, vol. 4, no. 33, pp. 7846–7852, 2016.
[58] Y.Jung, J.Shen, Y.Liu, J. M.Woods, Y.Sun, andJ. J.Cha, “Metal seed layer thickness-induced transition from vertical to horizontal growth of MoS2 and WS2,” Nano Lett., vol. 14, no. 12, pp. 6842–6849, 2014.
[59] W.Zeng, L. P.Feng, J.Su, H. xiPan, andZ. T.Liu, “Layer-controlled and atomically thin WS2 films prepared by sulfurization of atomic-layer-deposited WO3 films,” J. Alloys Compd., vol. 745, pp. 834–839, 2018.
[60] S. H.Choi et al., “Synthesis of Large-Area Tungsten Disulfide Films on Pre-Reduced Tungsten Suboxide Substrates,” ACS Appl. Mater. Interfaces, vol. 9, no. 49, pp. 43021–43029, 2017.
[61] Z.Qin et al., “Growth of Nb-Doped Monolayer WS2 by Liquid-Phase Precursor Mixing,” ACS Nano, vol. 13, no. 9, pp. 10768–10775, 2019.
[62] K. C.Kwon et al., “Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices,” ACS Nano, vol. 9, no. 4, pp. 4146–4155, 2015.
[63] O. A.Abbas et al., “Solution-Based Synthesis of Few-Layer WS2 Large Area Continuous Films for Electronic Applications,” Sci. Rep., vol. 10, no. 1, pp. 1–10, 2020.
[64] K.Kang et al., “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nat. 2015 5207549, vol. 520, no. 7549, pp. 656–660, Apr.2015.
[65] A.Delabie et al., “Low temperature deposition of 2D WS2 layers from WF6 and H2S precursors: impact of reducing agents,” Chem. Commun., vol. 51, no. 86, pp. 15692–15695, 2015.
[66] J.Park et al., “Layer-modulated synthesis of uniform tungsten disulfide nanosheet using gas-phase precursors,” Nanoscale, vol. 7, no. 4, pp. 1308–1313, 2015.
[67] M.Okada et al., “Gas-Source CVD Growth of Atomic Layered WS2 from WF6 and H2S Precursors with High Grain Size Uniformity,” Sci. Rep., vol. 9, no. 1, pp. 1–10, 2019.
[68] T.Irisawa et al., “CVD growth technologies of layered MX2 materials for real LSI applications - Position and growth direction control and gas source synthesis,” IEEE J. Electron Devices Soc., vol. 6, no. June, pp. 1159–1163, 2018.
[69] C.Cong et al., “Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition,” Adv. Opt. Mater., vol. 2, no. 2, pp. 131–136, Feb.2014.
[70] Y. H.Lee et al., “Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces,” Nano Lett., vol. 13, no. 4, pp. 1852–1857, 2013.
[71] K.Kang et al., “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature, vol. 520, no. 7549, pp. 656–660, Apr.2015.
[72] Y.Gao et al., “Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils,” Nat. Commun., vol. 6, Oct.2015.
[73] Y.Chen et al., “Achieving Uniform Monolayer Transition Metal Dichalcogenides Film on Silicon Wafer via Silanization Treatment: A Typical Study on WS2,” Adv. Mater., vol. 29, no. 7, p. 1603550, Feb.2017.
[74] J.Chen et al., “Synthesis of Wafer-Scale Monolayer WS2 Crystals toward the Application in Integrated Electronic Devices,” ACS Appl. Mater. Interfaces, vol. 11, no. 21, pp. 19381–19387, May2019.

無法下載圖示 全文公開日期 2027/01/04 (校內網路)
全文公開日期 2027/01/04 (校外網路)
全文公開日期 2027/01/04 (國家圖書館:臺灣博碩士論文系統)
QR CODE