簡易檢索 / 詳目顯示

研究生: 蔡尚翰
Shang-Han Tsai
論文名稱: 以多層奈米碳管進行PET薄膜表面改質之研究
Surface Modification of PET Film with Multi-wall Carbon Nanotube
指導教授: 許應舉
Ying-Gev Hsu
口試委員: 林江珍
Jiang-Jen Lin
陳耿明
Keng-Ming Chen
陳建光
Jem-Kun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 61
中文關鍵詞: 表面改質接枝聚合奈米碳管
外文關鍵詞: surface modification, grafting polymerization, carbon nanotube
相關次數: 點閱:479下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

將過氧化苯甲醯酯(benzoyl peroxide, BPO)以物理方法嵌入PET薄膜表面,在單體甲基丙烯酸環氧丙酯(glycidyl methacrylate, GMA)的蒸氣相中,使GMA接枝於PET薄膜表面,製備改質PET薄膜-PET-epoxy,由ESCA與SEM觀察分析PET-epoxy表面上出現polyGMA之環氧基鍵結與polyGMA的型態;將多層奈米碳管(multi-walled carbon nanotube, MWNT)在濃H2SO4/HNO3(V/V:3/1)溶液中進行氧化反應,讓MWNT表面產生羧酸基—MWNT-COOH,再利用強還原劑鋰氫化鋁(Lithium aluminum hydride, LAH)將其還原成MWNT-CH2OH,並在強鹼的環境下與環氧氯丙烷(Epichlorohydrin, ECH)反應製備表面具有環氧基(epoxy group)之改質MWNT-epoxy,並以FT-IR與溶劑分散法來分析確認MWNT-epoxy的改質效果,依結果顯示各階段的改質均反應成功。在光起始劑OPIA的存在下,將MWNT-epoxy以噴霧的方式均勻分散於PET-epoxy薄膜上,經UV光照射後,MWNT與PET表面之epoxy基團進行開環聚合反應,使MWNT固定於PET表面上,進而利用SEM觀察其表面型態,已可以初步觀察MWNT於PET表面之基本型態。


The epoxy group containing PET film, PET-epoxy, was prepared by immersed the PET film, which was embedded by benzoyl peroxide (BPO) physically, into the vapor of glycidyl methacrylate (GMA) at 90℃, and the poly-GMA then grafted from the surface of the film initiated by BPO. The morphology of and the functional group on the surface of PET were investigated and identified by SEM and ESCA. The epoxy group containing multi-walled nanotube (MWNT), MWNT-epoxy, was obtained after sequential reaction of MWNT, including oxidation of MWNT to afford MWNT-COOH, reduction of MWNT-COOH to afford MWNT-CH2OH, and epoxidation of MWNT-CH2OH to afford MWNT-epoxy. The respective functional groups thus obtained on the MWNT were identified by FT-IR, and their disperse property in solvent of the modified MWNT were evaluated. The PET-MWNT film was prepared by spraying MWNT-epoxy colloid and photoinitiator in alcohol onto the PET-epoxy film, After drying, the film was exposed to UV to undergo cationic polymerization of epoxy groups on MWNT and PET to fix the MWNT on the PET film. The morphology of the surface of PET-MWNT film was investigated by SEM.

中文摘要---------------------------------------------------------------------------I 英文摘要--------------------------------------------------------------------------II 誌謝------------------------------------------------------------------------------III 目錄-------------------------------------------------------------------------------Ⅵ 附圖索引------------------------------------------------------------------------IX 附表索引-----------------------------------------------------------------------XI 1. 前言---------------------------------------------------------------------------1 2. 文獻回顧---------------------------------------------------------------------4 2-1 .PET高分子材料的改質------------------------------------------------4 2-2 .奈米碳管-----------------------------------------------------------------6 2-2-1.奈米碳管改質-----------------------------------------------------6 2-2-2. 奈米碳管官能基化---------------------------------------------8 3. 基本原理--------------------------------------------------------------------10 3-1 PET表面改質-----------------------------------------------------------10 3-1-1. 反應起始劑之物理嵌入PET--------------------------------10 3-1-2. PET與單體的接枝反應---------------------------------------12 3-2 .奈米碳管表面改質----------------------------------------------------15 3-2-1. 奈米碳管表面改質--------------------------------------------15 3-2-2. 奈米碳管酸化機制--------------------------------------------15 3-2-3. 奈米碳管羧酸還原反應--------------------------------------16 3-2-4. 奈米碳管環氧基化的Model Reaction-------------------17 3-2-5. 奈米碳管環氧基化--------------------------------------------18 4. 實驗部份--------------------------------------------------------------------19 4-1 實驗藥品-----------------------------------------------------------------19 4-2 實驗設計與流程--------------------------------------------------------20 4-3 實驗方法-----------------------------------------------------------------21 4-3-1. PET薄膜與反應起始劑BPO結合--------------------------21 4-3-2. BPO其反應溫度與嵌入PET薄膜表面含量分析--------21 4-3-3. PET表面單體GMA接枝反應-------------------------------21 4-3-4. 奈米碳管的羧酸化--------------------------------------------23 4-3-5. MWNT-COOH之還原----------------------------------------23 4-3-6. 奈米碳管環氧基化--------------------------------------------23 4-3-7. 奈米碳管與PET薄膜之結合--------------------------------24 4-4 實驗樣品測試方法與條件--------------------------------------------25 5. 結果與討論-----------------------------------------------------------------27 5-1 PET薄膜表面改質-----------------------------------------------------27 5-1-1. BPO嵌入PET薄膜表面之條件與含量分析--------------27 5-1-2. 接枝反應溫度與接枝密度(grafting density, Gd)之分析 -----------------------------------------------------------------------------29 5-1-3. PET薄膜表面元素鍵結分析---------------------------------30 5-1-4. PET薄膜表面型態分析---------------------------------------32 5-2 奈米碳管表面改質----------------------------------------------------34 5-2-1. 羧酸化奈米碳管-----------------------------------------------34 5-2-2. 奈米碳管表面改質之紅外線光譜及分散性分析--------35 5-2-2-1. FT-IR光譜分析-------------------------------------------35 5-2-2-2. 奈米碳管溶劑分散性分析-----------------------------38 5-3 PET薄膜與奈米碳管之結合---------------------------------------42 5-3-1. 反應機制--------------------------------------------------------42 5-3-2. PET-MWNT薄膜之表面結構觀察與電阻分析----------44 6. 結論--------------------------------------------------------------------------46 7. 參考文獻--------------------------------------------------------------------47 附圖索引 圖2-1:C60立體結構圖-----------------------------------------------------7 圖3-1:BPO嵌入處理示意圖-------------------------------------------11 圖3-2:BPO的反應機制-------------------------------------------------13 圖3-3:Poly-GMA的形成-----------------------------------------------13 圖3-4:PET與GMA接枝反應過程圖--------------------------------14 圖3-5:奈米碳管酸化反應機制-----------------------------------------15 圖3-6:奈米碳管羧酸還原反應機制---------------------------------16 圖3-7:Model Reaction反應機制----------------------------------17 圖3-8:奈米碳管環氧基化反應機制-------------------------------------18 圖4-1:PET表面接枝實驗裝置示意圖---------------------------------22 圖4-2:噴霧裝置圖-----------------------------------------------------------24 圖5-1:PET薄膜表面BPO嵌入量與溫度之關係圖------------------28 圖5-2:PET薄膜在不同溫度及時間下的接枝密度--------------------29 圖 5-3:PET薄膜反應前後XPS表面元素分析, (a) blank PET film, (b) 90℃ 30min,(Gd=0.013 mg/cm2), (c) 90℃ 45min,(Gd=0.033 mg/cm2), (d) 90℃ 60min,(Gd=0.049 mg/cm2)----31 圖5-4:不同溫度下PET薄膜接枝反應前後SEM表面型態分析,(a) blank PET film, (b) 80℃, (c) 90℃, (d) 100℃。(接枝反應為90min)----------------------------------------------------------------33 圖5-5:奈米碳管(a)pristine-MWNT (b)MWNT-COOH -----34 圖5-6:官能基化奈米碳管FT-IR圖-------------------------------------37 圖 5-7:官能基化奈米碳管FT-IR光譜圖(波長1300∼2000 cm-1---37 圖 5-8:官能基化奈米碳管FT-IR光譜圖(波長850∼960 cm-1)------37 圖5-9:(a)MWNT(b)MWNT-COOH(c)MWNT-CH2OH(d)MWNT- epoxy於水中分散性情形-----------------------------------------39 圖5-10:(a)MWNT(b)MWNT-COOH(c)MWNT-CH2OH(d)MWNT- epoxy於乙醇中分散性情形---------------------------------------39 圖5-11:(a)MWNT(b)MWNT-COOH(c)MWNT-CH2OH(d)MWNT- epoxy於二氯甲烷中分散性情形--------------------------------40 圖5-12:PET薄膜與奈米碳管的結合反應機制---------------------------43 圖5-13:(a)MWNT-epoxy(b)PET-MWNT;500倍之SEM巨觀型態觀察----------------------------------------------------------------------45 圖5-14:(a)MWNT-epoxy(b)PET-MWNT;10000倍之SEM微觀型態觀察-------------------------------------------------------------------45 附表索引 表4-1:PET薄膜表面接枝反應條件--------------------------------------22 表5-1:奈米碳管溶劑分散性比較表--------------------------------------40

1. L. Q. Toan, J. J. Pireaux, J. J. Verbist, Surf. Interface Anal., 1994, 22, 224.
2. L. P. Zhu, B. Ku, X. Li, Y. X. Feng, F. Liu, Y. Y. Xu, Appl. Surf. Sci., 2007, 253, 6052.
3. L. S. Penn, H. Wang, Polym. Advan. Technol. , 1994, 5, 809.
4. E. Uchida, H. Iwata, Y. Ikada, Polymer, 2000, 41, 3609.
5. L. Q. Toan, J. J. Pireaux, J. J. Verbist, Surf. Interface Anal., 1994, 22, 224
6. W. Chen, T. J. McCarthy, Macromolecules, 1998, 31, 3648.
7. S. L. Gao, R. Habler, E. Mader, T. Bahners, K. Opwis, E. Schollmeyer, Appl. Phys. B, 2005, 81, 681.
8. S. Iijima, Nature, 1991, 354, 56.
9. H. Dai, E. W. Wong, C. M. Lieber, Science, 1996, 272, 523.
10. B. Leclercq, M. Scotton, A. Baszkin, L. Ter-Minsassian-Saraga, Polymer, 1977, 18, 675.
11. T. Haga, J. Appl. Polym. Sci., 1981, 26, 2649.
12. A. Hebeish, S. Shalaby, A. Waly, A. Bayazeed, J. Appl. Polym. Sci., 1983, 28, 303.
13. J. Buchenska, J. Appl. Polym. Sci., 1997, 65, 967.
14. E. Uchida, H. Iwata, Y. Ikadac, Polymer, 2000, 41, 3609.
15. J. Hu, C. Yin, H. Q. Mao, K. Tamada, W. Knoll, Adv. Funct. Mater., 2003, 13, 962.
16. G. T. Herman, Bioconjugates techniques, Academic Press, New York, 1995.
17. C. M. Chan, Polymer Surface Modification and Characterization, Hancer, Munchen(Germary), 1994, p.251
18. 成會明,奈米碳管,五南圖書出版公司,2004。
19. S. Iijima, T. Ichihashi, Nature, 1993, 363, 603.
20. D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, Nature, 1993, 363, 605.
21. M. J. Yacaman, M. M. Yoshida, L. Rendon, et al, Appl. Phys. Lett., 1993, 62, 202.
22. N. Hamada, S. I. Sawada, A. Oshiyama, Phys. Rev. Lett., 1992, 68, 1579.
23. J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett., 1992, 68, 631.
24. Y. Chen, R. C. Haddon, S. Fang, et al, J. Mater. Res., 1998, 13, 2423.
25. S. C. Tsang, Y. K. Chen, M. L. H. Green, Nature, 1994, 372, 159.
26. M. A. Hamon, J. Chen, H. Hu, Adv. Mater., 1999, 11, 834.
27. A. Kuznetsova, I. Popova, J. T. Yates, M. J. Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H. H. Hwu, J. G. Chen, J. Am. Chem. Soc., 2001, 123, 10699.
28. A. Kuznetsova, D. B. Mawhinney, V. Naumenko, J. T. Yates, J. Liu, R. E. Smalley, Chem. Phys. Lett., 2000, 321, 292.
29. E. T. Mickelson, C. B. Huffman, J. L. Margrae, Chem Phys. Lett., 1998, 296, 188.
30. Y. Zhang, N. Frankin, R. Chen, H. J. Dai, Chem Phys. Lett., 2000, 331, 35.
31. M. Sano, A. Kamino, J. Okamura, Science, 2001, 293, 1299.
32. C. H. Tseng, C. C. Wang, C. Y. Chen, Nanotechnology, 2006, 17, 5602.
33. J. Zhu, J. Deng, S. Cheng, W. Yang, Macro. Chem. Phy., 2006, 207, 75.
34. S. Hu, William J. Brittain, Macromolecules, 2005, 38, 6592.
35. J. Buchenska, J. Appl. Polym. Sci., 1997, 65, 967.
36. K. Hatada, T. Kitayama, K. Ute, Y. Terawaki, T. Yanagida, Macromolecules, 1997, 30, 6754.
37. E. Uchida, H. Iwata, Y. Ikada, Polymer, 1999, 41, 3609.
38. A. Eitan, K. Jiang, D. Dukes, R. Andrews, L. S. Schadler, Chem. Mater., 2003, 15, 3198.
39. J. F. Watt, J. Wolstenholme. An Introduction to Surface Analysis by XPS and AES, Wiley Interscience: UK, 2003

QR CODE