簡易檢索 / 詳目顯示

研究生: 劉益宏
Yi-Hung Liu
論文名稱: 液體黏滯度對擬脆固材液驅破壞力學行為之影響
Effects of Viscosity on the Mechanical Behavior of Fluid-driven Damage for Quasi-brittle Solids
指導教授: 陳堯中
Yao-Chung Chen
口試委員: 歐章煜
Ou Chang Yu
黃燦輝
Tsan-Hwei Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 88
中文關鍵詞: 黏滯度液驅破壞聲射法斑點剪切干涉術叢聚
外文關鍵詞: Fluid-driven Damage
相關次數: 點閱:202下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對低滲透擬脆性類岩試體進行水力破裂試驗,以自行設計之儀設求得完整(包括峰後)之加載曲線,並結合聲射法與斑點剪切干涉術兩種非破壞檢測,試體巨觀與微觀之破壞行為。
    本研究探討三個岩材液驅破壞行為之變數 : (1)液體黏滯度(2)固材滲透性(3)固材之外內徑比。以聲射法研探試體內部微裂縫之衍、化與斑點剪切干涉術量測試體外部之巨觀裂縫,以內、外及微觀、巨觀詳探裂縫之力學行為。
    實驗結果顯示,在巨觀行為方面,當黏滯度提升、滲透性越低及外內徑比越高時,尖峰強度越高。在微觀尺度下,聲射事件(AE event)叢聚(Localization)時機發生於峰後,而第一條干涉條紋則產生在峰前(加載比99~100%處),表示擬脆性材料在液驅破壞作用下,在峰前無明顯破壞徵兆。


    In the past, such as the tunnels, reservoirs; exploitation of natural resources in underground drilling and carbon sequestration,and underground nuclear waste repository etc. shall be concidering fluid-driven fracture causing of the derivative of the crack to be understood. This study tested the impermeably quasi-brittle rock, in order to expand the amount of test substance for feedback control signal of fluid-driven fracture, apparatus with coupling e non-destructive testing.acoustic emission (Acoustic Emission) and speckle shearing interferometry (SSI)

    摘要 目 錄 表目錄 圖目錄 符號對照表 第一章 緒論 1.1動機與目的 1.2研究範圍與方法 1.3流程與內容 第二章 文獻回顧 2.1 液驅破壞理論 2.1.1彈性模式 2.1.2彈性破壞模式 2.2 破壞力學之相關理論-線彈性破壞力學 2.2.1 破壞力學之發展 2.2.2破壞模式 2.3 非破壞檢測技術–聲射法 2.3.1聲射定位準則 2.3.2 聲射定位原理 2.4 光學非破壞檢測技術–斑點剪切干涉術 2.4.1斑點剪切干涉術之沿革 2.4.2斑點效應 2.4.3 量測原理 第三章 試驗規劃 3.1 試體與流體整備 3.1.1材料選配與試體製作 3.1.2 試驗用液體 3.2 液驅破壞儀設 3.2.1 液驅加載設備 3.2.2 止水套管 3.2.3 環狀應變計 3.2.4 操作系統 3.3 聲射訊號擷系統 3.4 斑點剪切干涉術儀器 3.5 實驗施作流程 3.5.1 實驗設置 3.5.2 實驗進行與結束 第四章 試驗結果與分析 4.1液驅破壞之巨觀行為 4.1.1 完整加載歷程 4.1.2 固材滲透性之影響 4.1.3 流體黏滯度之影響 4.1.4 外內徑比之影響 4.2 液驅破壞之微觀行為 4.2.1 AE微震裂源之破壞特徵 4.2.2 SSI干涉條紋之破壞特徵 第五章 結論與建議 82 5.1 結論 82 5.1.1巨觀加載行為 5.1.2微觀破壞演化 5.2建議 5.2.1 試驗材料 5.2.1 液驅破壞試驗儀器 5.2.2 非破壞檢測系統 參考文獻

    1.林世聰(2009),光電精密量測,上課講義,國立台北科技大學光電工程系,台北。
    2.陳韋志(2014),應用同步化非破壞檢測技術研探擬脆岩材受液體驅動破壞之行為,博士論文,國立台灣科技大學營建工程系,台北。
    3.Bray, D. E., and McBride, D. (1992). Acoustic emission technology. John Wiley and Sons Ins., New York, 345-377.
    4.Butters, J. N., and Leendertz, J. A. (1971). Holographic and video techniques applied to engineering measurement. Measurement and control, 4(12), 349-354.
    5.Carpinteri, A., Corrado, M., and Lacidogna, G. (2013). Heterogeneous materials in compression: Correlations between absorbed, released and acoustic emission energies. Engineering Failure Analysis, 33, 236-250. doi:10.1016/j.engfailanal.2013.05.016
    6.Carpinteri, A., Lacidogna, G., Niccolini, G., and Puzzi, S. (2007). Critical defect size distributions in concrete structures detected by the acoustic emission technique. Meccanica, 43(3), 349-363. doi: 10.1007/s11012-007-9101-7
    7.Chen, L.H., (2001). Failure of Rock under Normal Wedge Indentation, Ph. D. thesis, Department of Civil and Mining Engineering. University of Minnesota, USA.
    8.El. Batanouny, M. K., Larosche, A., Mazzoleni, P., Ziehl, P. H., Matta, F., and Zappa, E. (2012). Identification of Cracking Mechanisms in Scaled FRP Reinforced Concrete Beams using Acoustic Emission. Experimental Mechanics, 54(1), 69-82. doi: 10.1007/s11340-012-9692-3
    9.Fortin, J., Stanchits, S., Dresen, G., and Gueguen, Y. (2006). Acoustic emission and velocities associated with the formation of compaction bands in sandstone. Journal of Geophysical Research, 111(B10). doi: 10.1029/2005jb003854
    10.Goodman, R. E. (1989). Introduction to rock mechanics (2nd ed). John Wiley and Sons, New York.
    11.Griffith, A. A. (1921). "The Phenomena of Rupture and Flow in Solids." Phil. Trans. Ray. Soc., London A221, p 163-197.
    12.Hubbert, M. K., and Willis, D. G. (1957). Mechanics of hydraulic fracturing. Underground Waste Management and Environmental Implications, p 239-257
    13.Hopkins, H. H., and Tiziani, H. J. (1970). Speckling in diffraction patterns and optical images formed with the laser. Paper presented at the Comptes rendus du Symposium International d'Holographie, Besancon.
    14.Ito, T., and Hayashi, K. (1991). Physical background to the breakdown pressure in hydraulic fracturing tectonic stress measurements. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 28(4), 285-293. doi: http://dx.doi.org/10.1016/0148-9062(91)90595-D
    15.Kaiser, J. (1953). "Undersuchungen Uber Das Aufrterten Geraucchen Beim Zevgersuch." Ph.D Thesis. Technische Hochschule, Munich.
    16.Lei, X., Kusunose, K., Rao, M. V. M. S., Nishizawa, O., and Satoh, T. (2000). Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring. Journal of Geophysical Research, 105(B3), 6127. doi: 10.1029/1999jb900385
    17.Labuz, J.F., Shah, S.P., and Dowding, C.H., 1987. The fracture process zone in granite: evidence and effect. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 24, 235-246.
    18.Leendertz, J. A., and Butters, J. N. (1973). An image-shearing speckle-pattern interferometer for measuring bending moments. Journal of Physics E: Scientific Instruments, 6(11), 1107.
    19.Leith, E. N., and Upatnieks, J. (1962). Reconstructed wavefronts and communication theory. JOSA, 52(10), 1123-1128.
    20.Maji, A. K. (1994). "Acoustic emissions from reinforced concrete" Experimental Mechanics, v 34, n 4, p 379-388.
    21.Ohtsu, M. (1987). Acoustic emission characteristics in concrete and diagnostic applications. Journal of acoustic emission, 6(2), 99-108.
    22.Rummel, F. (1987). Fracture mechanics approach to hydraulic fracturing stress measurements. Fracture mechanics of rock, 6, 217-239.
    23.Rummel, F., and Winter, R. B. (1983). Application of laboratory fracture mechanics data to hydraulic fracturing field tests Hydraulic fracturing and geothermal energy (pp. 493-501): Springer.
    24.Shah, K. R., and Labuz, J. F. (1995). Damage mechanisms in stressed rock from acoustic emission. Journal of Geophysical Research: Solid Earth (1978–2012), 100(B8), 15527-15539.
    25.Wu, R. (2006). Some fundamental mechanisms of hydraulic fracturing. Georgia Institute of Technology.
    26.Zoback, M. D., Rummel, F., Jung, R., and Raleigh, C. B. (1977). Laboratory hydraulic fracturing experiments in intact and pre-fractured rock. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 14(2), 49-58. doi: http://dx.doi.org/10.1016/0148-9062(77)90196-6

    QR CODE