簡易檢索 / 詳目顯示

研究生: 劉明政
Ming-Cheng Liu
論文名稱: 改質矽酸奈米顆粒對環氧樹脂/SiO2混成材料結構及性質探討
The Effect of Modified Polysilicic Acid on the Structure and Properties of Epoxy/ SiO2 hybrids
指導教授: 許應舉
Ying-Gev Hsu
口試委員: 陳信龍
none
洪伯達
Po-Da Hong
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 89
中文關鍵詞: 奈米顆粒環氧樹脂
外文關鍵詞: CLNs, IPNs
相關次數: 點閱:323下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 將聚矽酸奈米顆粒 (polysilicic acid nanoparticles, PN)表面之矽醇基(Si-OH)與含有矽氧烷類基團【-Si(OR)3】的改質劑(modifier)-3-glycidoxypropyltrimethoxysilane (GPTS)及3-(trimethoxysilyl) propyl- methacrylate (TPA)進行反應,將PN顆粒表面改質成含有-CH-CH2及-C-C(CH3)=CH2基團之改質PN,並分別以G-PN與T-PN稱之。
    G-PN及T-PN分別與環氣樹脂DGEBA(diglycidyl ether bisphenol A)、硬化劑MDA(4,4’-methylenedianiline)混合均勻,並調配成透明之粘稠液(分別以G-epoxy和T-epoxy稱之)。G-epoxy 與T-epoxy在熱硬化處理後,形成之有機-無機混成材料為架橋結構(cross-linked networks, CLNs);然而,T-epoxy在BPO(benzoyl peroxide)的存在下,經熱處後,則形成有機無機相互穿梭網絡結構(interpenetrating networks, IPNs)。以各種儀器如FT-IR、DSC、TMA、SAXS、DMA、分析材料之相間作用力、微細構造、彎曲模數、動態機械與熱性質,並進而評估材料結構對硬化收縮及內應力之影響。實驗結果發現,相較於CLNs結構,IPNs結構之混成材料具有較低的硬化收縮率及內應力,且在不犠牲材料Tg的情況下有更好的機械性質。


    The 3-glycidoxypropyltrimethoxysilane (GPTS) and 3-(trimethoxysilyl) propyl- methacrylate (TPA) modified polysilicic acid nanoparticles (PN), G-PN and T-PN, were mixed, respectively, with the solution of DGEBA and 4,4’-methy-lenedianiline (MDA), DGEBA/MDA, to prepare homo- -geneous resins called, G-epoxy and T-epoxy. When G-epoxy and T-epoxy were heat cured, they crosslinked, respectively, with the matrix, DGEBA/MDA, to afford the hybrids, DGEBA/MDA/G-PN and DGEBA/MDA/T-PN, of cross-linked networks (CLNs) structures. However, when T-epoxy was heated in the presence of peroxide (e.g., BPO), the structure of the cured hybrid, DGEBA/MDA/T-PN-B, became an structure of interpenetrating networks (IPNs). It was found that the DGEBA/MDA/T-PN-B hybrid of IPN structure had lower curing shrinkage and internal stress than that of the cured DGEBA/MDA and DGEBA/MDA/T-PN and DGEBA/MDA/G-PN hybrids of CLNs structure without sacrificing the Tg ,thermal ,and mechanical properties of the material.

    中文摘要………………………………………………………………I 英文摘要………………………………………………………………II 誌謝……………………………………………………………………III 目錄……………………………………………………………………IV 附圖索引………………………………………………………………VII 附表索引………………………………………………………………IX 第一章前言--------------------------------------------1 第二章文獻回顧----------------------------------------4 2-1環氧樹脂低硬化收縮研究與發展--------------------4 2-2環氧樹脂的IPNs結構------------------------------8 2-3SAXS於IPNs結構的應用---------------------------11 第三章基本原理---------------------------------------13 3-1溶膠-凝膠法的製程------------------------------13 3-2PN法的製程-------------------------------------18 3-3PN表面改質法的製程-----------------------------20 3-4體積收縮率的測試原理---------------------------21 3-5內應力的測試原理-------------------------------22 3-5.1 決定內應力的參數-----------------------------22 3-5.2線性熱膨脹係數---------------------------------23 3-5.3三點彎曲試驗-----------------------------------24 3-6SAXS應用於IPN結構的基本原理--------------------26 3-6.1 測量intraparticle的距離-------------------------26 3-6.2 測量interparticle的距離-------------------------28 第四章 實驗------------------------------------------29 4-1 實驗藥品------------------------------------------29 4-2 PN顆粒之合成--------------------------------------31 4-3 PN顆料之表面改質----------------------------------32 4-3.1 PN表面之-OH基團測定---------------------------35 4-4 混成材料試料製備----------------------------------35 4-4.1 DGEBA/MDA 系統----------------------------------36 4-4.2 DGEBA/MDA/M-PNs 系統----------------------------37 4-5 混成材料測試--------------------------------------39 4-5.1 收縮率的測試----------------------------------40 4-5.2 FT-IR-----------------------------------------41 4-5.3 內應力測試------------------------------------42 4-5.4 SAXS測試--------------------------------------44 4-5.5 DMA熱機械性質測試-----------------------------45 4-5.6 DSC熱性質測試---------------------------------46 第五章 結果與討論-----------------------------------47 5-1 Si-OH濃度之測定----------------------------------47 5-2 PN顆粒之改質-------------------------------------48 5-3 混成材料之製備-----------------------------------51 5-4 混成材料之收縮效應-------------------------------54 5-5 模型反應探討反應機制-----------------------------58 5-5.1 結構分析模擬試驗---------------------------------62 5-6 混成材料硬化之內應力-----------------------------65 5-7 SAXS研討混成材料之IPNs結構-----------------------69 5-8 DMA研討混成材料之動態機械性質--------------------74 5-9 DSC研討混成材料之熱性質--------------------------78 第六章結論-------------------------------------------84 第七章參考文獻---------------------------------------86 附圖索引 圖3-1 溶膠-凝膠法製備混成複材之流程圖-------------------14 圖3-2 PN法製備混成複材之流程圖--------------------------19 圖3-3 線性熱膨脹係數之測試原理--------------------------23 圖3-4 三點彎曲試驗(3-Point Blend Flexural test)測試條件24 圖3-5 文獻36Debye plot of I-1/2 versure S2-------------27 圖3-6 文獻36Guinier plot of ln I versure S2------------28 圖4-1 DGEBA與MDA之反應機構-----------------------------36 圖4-2 混成材料之製備流程圖-----------------------------38 圖4-3 混成材料樣品測試流程圖---------------------------39 圖5-1 DGEBA/MDA基材與PN顆粒相間氫鍵結合之結構----------48 圖5-2 PN顆粒表面改質之反應機制-------------------------49 圖5-3 PN, G-PN與T-PN之FT-IR光譜圖----------------------50 圖5-4 DGEBA/MDA基材與三種不同混成材料之FT-IR光譜比較圖-53 圖5-5 各混成材料系統在不同PN含量下體積收縮率的比較圖---54 圖5-6 混成材料在不同(Modifier)/PN比例下體積收縮率的比較56 圖5-7 MDA/T-PN混合液中不加起始劑及加入起始劑加熱前後之FT-IR光譜圖--------------------------------------------60 圖5-8 DGEBA/MDA/G-PN、DGEBA/MDA/T-PN及DGEBA/ MDA/T-PN-B系統之反應機制圖-----------------------------61 圖5-9 T-PN2/S-PN2、T-PN4/S-PN4、T-PN8/S-PN8,加熱硬化後之之FT-IR光譜圖----------------------------------------------------64 圖5-10 各混成材料之內應力比較圖------------------------------------67 圖5-11 各混成材料之內應力與體積收縮率對照圖------------------68 圖5-12 DGEBA/MDA/PN及DGEEBA/MDA/T-PN-B系列之Debye -Bueche plot-------------------------------------------------------69 圖5-13 DGEBA/MDA/PN及DGEEBA/MDA/T-PN-B系列之Guinier plot--------------------------------------------------------70 圖5-14 DGEBA/MDA/PN及T-PN-B系統之IPNs結構模擬----73 圖5-15 基材DGEBA/MDA及各混成材料系,經熱處理硬化後之DMA試驗---------------------------------------75 圖5-16 基材DGEBA/MDA及T-PN-B系統(IPNs結構)混成材料,經熱處理硬化後之DMA試驗--------------77 圖5-17 DGEBA/MDA/G-PN系統各成份之DSC圖------------------81 圖5-18 DGEBA/MDA/T-PN系統各成份之DSC圖------------------82 圖5-19 DGEBA/MDA/T-PN-B系統各成份之DSC圖--------------83 附表索引 表4-1 固定[GPTS]/PN比例與改變 PN含量下混成林料之配方表--33 表4-2 固定[TPA]/PN比例與改變 PN含量下混成林料之配方表----33 表4-3 固定 PN含量與改變[GPTS]/PN比例下混成林料之配方表--34 表4-4 固定PN含量與改變[TPA]/PN比例下混成林料之配方表---34 表5-1 不同改質劑比例下PN表面Si-OH含量(mM / g)--------------47 表5-2 混成材料在不同改質劑存在下之樣品名稱---------------------51 表5-3 各系列混成材料中抗收縮效果最佳之(Modifier)/PN比例---57 表5-4 各混成材料之彎曲模數(Er)、熱膨脹係數(α1)與內應力參數(S)之值------------------------------------------------------------------66 表5-5 經由SAXS所得二相之間的相關參數---------------------------71 表5-5 各混成材料系統之Tg值-------------------------------------------80

    1.K. E. Atkins, in “Sheet Molding Compounds:Science and Technology”. Ch4, H. G. Kia ed., Hanser Rublishers, New York(1993)
    2.W. Chen, H. Feng, D. He and C. Ye, J. Appl. Sci., 67, 139(1998)
    3.M. Harada, M. Morimoto and M. Ochi, J. Appl. Polym. Sci., 87, 787(2003)
    4.N. Tetsuro and N. Yasutada, Toshiba Co. Japan, Transfer-Asian Research, 31(3), 194(2002)
    5.T. H. Ho and C. S. Wang, European Polymer Journal, 37, 267(2001)
    6.C. S. Wu, Y. L. Liu and Y. S. Chiu, Polymer, 43, 4277(2002)
    7.W. F. Su, Y. C. Lee and W. P. Pan, Thermochimica Acta, 392(2002)
    8.M. Ochi and H. Takashima, Polymer, 42, 2379(2001)
    9.Y. Nakamura, M. Yamguchi, A. Tanaka and M. Okubo, Polymer, 34, 15, 3220(1993)
    10.T. H. Ho and C. S. Wang, J. Appl. Polym. Sci., 51, 2047(1994)
    11.M. Ochi, R. Takahashi and A. Terauchi, Polymer, 42,
    5151(2001)
    12.J. I. Meijerink, S. Eguchi, M. Ogata, T. Ishii, S. Amagi and S.
    Numata, Polymer, 35(1), 179(1994)
    13.Y. Nakamura, S. Uenishi, T. Kunishi and T. Matsumoto, Ie Transactions on Components, Hybrid, and Manufacturing Technology, 12(4), 502 (1987).
    14. Y. Nakamura and M. Yamaguch, J. Appl. Polym. Sci., 49, 331(1993)
    15. K. Kuwata, K. Iko and H. Tabata, IEEE Trans. Comp. Hybrids Manuf. Technol., CHMT-8(4), 427(1985)
    16. Robert F. Brady Jr., J. Polym. Sci. Part A:Polym. Chem., 25, 231(1987)
    17. Y. Nakamura, S. Uenishi and T. Matsumoto, IEEE Trans. Comp. Hybrids Manuf. Technol., CHMT-12(4), 503(1987)
    18. Allison M. Sikes, Robert F. Brady Jr., J. Polym. Sci. Part A:Polym. Chem., 28, 2533 (1990)
    19. T. H. Ho and C. S. Wang, J. Appl. Polym. Sci., 50, 477(1993)
    20. Yu. A. Chekanov, V. N. Korotkov, Polymer, 36(10), 2013(1994)
    21. T. H. Ho and C. S. Wang, Polymer, 37(13), 2733(1996)
    22. H. J. Hwang and C. S. Wang, Polymer, 37(3), 499(1996)
    23. M. Ochi and S. Shimaoka, Polymer, 40, 1305(1999)
    24. M. Ochi and R. Takahashi, J. Polym. Sci. Part B:Polym. Phy., 39, 1071(2001)
    25. Cristina Mas, Xavier Ramis, J. Polym. Sci. Part A:Polym. Chem., 41, 2794 (2003)
    26. Prasad V. S. Ita., Harry L. Frisch, J. Polym. Sci. Part A:Polym. Chem., 24, 2297 (1986)
    27. K. H. Hsieh, J. L. Han, J. Polym. Sci. Part B:Polym. Phy., 28, 623(1990)
    28. Mu-shih Lin, Kuen-Tay Jeng, J. Polym. Sci. Part A:Polym. Chem., 30, 1941 (1992)
    29. Mu-shih Lin, Shin-Tien Lee, Polymer, 38(1), 53(1997)
    30. K. Dean, W. D. Cook, Polymer, 42, 1345(2001)
    31. V. M. Michal’chuk, A. N. Nikolaevskii, Polymer, 42, 1691(2001)
    32. C. Decker, T. Nguyen Thi Viet, Polymer, 42, 5531(2001)
    33. Bradley K. Coltrain, Christine J. T. Landry, Chem. Mater. 5, 1445(1993)
    34. Susheng Tan, Donghua Zhang, Polymer International, 42, 90(1997)
    35. Susheng Tan, Donghua Zhang, Polymer, 38(18), 4571 (1997)
    36. Xiaoqiang Yu, Jingyuan Wang, J. Appl. Polym. Sci., 74, 1898(1999)
    37. E. J. A. Pope, M. Asami and J. D. Mackenzie, J. Mater. Res., 4, 1018 (1989)
    38. B. M. Novak and C. Davies, Macromolecules, 24, 5481 (1991)
    39. K. A. Maurite, J. Appl. Polym. Sci., 40, 1401 (1990)
    40. E. P. Plueddemann, "Silane Coupling Agents", PLENUM Press, (1982)
    41. B.M. Novak, Adv. Mater., 5, 422 (1993).
    42. B. M. Novak and M. W. Ellsworth, Materials Sciences and Engineering, A162, 257(1993)
    43. J. Wen, E. M. James, Polymer. Joural. , 27(5), 492 (1995)
    44.F. Suzuki, K. Nakane, and J. S. Piao, J. Mater. Sci., 31,1335(1996)
    45.R. K. Iler and P. S. Pinkney,Industrial and Engineering Chemistry, 39,1379(1947)
    46.Y. Abe, A. Kaijou, N. Shintani, Y. Nagao, and T. Misono, J. Polym. Sci. Polym. Chem. Ed., 26, 419(1988)
    47.Y. Abe, T. Namiki, K. Tuchida, Y. Nagao,and T. Misono, J. Non-Cryst. Solids, 147&148, 47(1992)
    48.Yen Wei, Danliang Jin, Chuncai and Gu Wei, Polym. Mater. Sci. Eng.,74, 244 (1996)
    49.Y. J. Huang and W. C. Jiang, Polymer, 39, 6631(1998)
    50.Y. J. Huang and C. C. Su, J. Appl. Polym. Sci., 55, 305(1995)
    51.W. Li and L. J. Lee, Polymer, 41, 685(2000)
    52.Y. Nakamura and M. Yamaguchi, Polymer, 33(16), 3415(1992)
    53.Debye P., Bueche A. M., J. Appl. Phys., 20, 518(1949)
    54.Debye P., Anderson H., J. Appl. Phys., 28, 679(1957)
    55.An. J. H., A. M., Macromolecules, 20, 191(1987)
    56.Moritani M., Inone T., Macromolecules, 3, 433(1970)
    57. Yuaga S, Okabayahi M, Ohno H, Suzuki K, Kusumoto K. US Patent 4,794,497.
    58.Mo Song, Douglas J. J. Appl. Polym. Sci., 79, 1958(2001)

    QR CODE