簡易檢索 / 詳目顯示

研究生: 張育興
Yu-Sing Chang
論文名稱: 小圓柱尾流衝擊時的流場特性
Tomographic flow characteristics of laminar wakes of small circular cylinders impinging on a flat plate
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 林怡均
Yi-Jiun LIN
許清閔
Ching-Ming Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 283
中文關鍵詞: 平板尾流圓柱
外文關鍵詞: Flat plate, wake, circular cylinder
相關次數: 點閱:403下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究藉由實驗方法,探討小圓柱尾流衝擊平板時所形成之流場特徵與氣動力性能。藉由雷射光頁輔助煙霧可視化技術,觀察小直徑圓柱尾流之流場特徵以及衝擊平板時之流場特徵;使用熱線風速儀量測小直徑圓柱下游的時序訊號;以質點影像速度儀(PIV)量測受小直徑圓柱尾流衝擊時的平板上游流場結構,並與流場可視化之特徵比對;使用壓力掃描器量測平板上游的表面壓力,探討小直徑圓柱尾流衝擊平板時,對平板上游表面壓力的影響。改變雷諾數、小直徑圓柱直徑以及平板寬度,流場可視化、熱線風速儀量測、迎風面壓力量測及速度場的實驗結果顯示:當小圓柱直徑固定時,在雷諾數與平板寬度的場域內,受到不同模態(例如:creeping flow, standing vortices, unstable standing vortices, and Kármán-Bénard eddies)之小直徑圓柱尾流衝擊時,流場特徵模態可分為parallel flow (平行流)、 vorticity concentrated mode (兩個轉向相反且近似對稱的旋轉流)、vortex formation mode (蕈狀渦漩結構)、 transitional mode (蕈狀渦漩結構上游呈現一至三個小渦漩結構)、 unstable vortex mode (蕈狀渦漩結構呈現不規則的逸放行為)。當小圓柱直徑雷諾數Red  14且小圓柱直徑與平板寬度比值d/D  0.05時,才會有parallel flow出現;當小圓柱直徑雷諾數Red > 14且小圓柱直徑與平板寬度比值d/D < 0.05時,由於平板表面上游區的蕈狀渦漩結構的生成,橫風不會直接衝擊平板表面,使得平板上游表面壓力係數降低。


The flow characteristics around the upstream face of a laminar wake-impinged flat plate with a finite width were experimentally studied in a wind tunnel. The laminar wake was evolved from a small-diameter circular cylinder at the Reynolds number based on the cylinder diameter (0.5 and 1.0 mm) lower than 160. The Reynolds numbers based on the width of the flat plate (varied from 10 to 60 mm) was lower than 9606. The smoke flow patterns, velocity field, streamline patterns, vorticity distributions, and pressure coefficients were measured and discussed. The visual flow patterns were obtained by the laser-light sheet assisted smoke flow visualization method. The velocity field was measured by the particle image velocimetry. The streamline and vorticity distributions were calculated from the measured velocity data. The topological flow patterns were proposed according to the streamline patterns to assist understanding of the characteristic flow structures. The surface pressure distributions across the width of the flat plate were measured by installing the pressure taps on the plate surface. The pressure coefficients were calculated using the measured surface pressures to characterize the influence of the wake impingement on the aerodynamic force. The physical mechanism of vortex formation was discussed based on the measured flow patterns and vorticity distributions. Four characteristic flow modes (vorticity concentrated, vortex formation, transitional, and unstable vortex modes) were observed around the upstream face of the wake-impinged flat plate when the flat plate width was larger or equal to 20 mm at all Reynolds numbers Red based on the small cylinder diameter and the small cylinder diameter to flat plate width ratios d/D performed in the study. As the flat plate width was smaller or equal to 10 mm, parallel flow around the upstream region of the upstream face of the flat plate was observed (i.e., no vortical flow structure existed there) at Red  14 and d/D  0.05. These characteristic flow modes appeared in different regimes in the domain of the plate Reynolds number and cylinder diameter-to-plate width ratio, and were formed as the plate was impinged by different cylinder wake modes (i.e., creeping flow, standing vortices, unstable standing vortices, and Kármán-Bénard eddies). The cylinder wake presented velocity defects across the wake and persisted to the far downstream area. The velocity gradients of the velocity defects led to accumulation of vorticities in the vertical plane around the upstream face of the wake-impinged flat plate. When the wake flows approached the flat plate, the vorticities in the wake made the flows curved towards the center plane and induced a reverse flow going towards upstream. The upstream-going flow met the freestream and diverted laterally to form a counter-rotating mushroom type vortices which primarily dominated the flow field. The lateral vortex stretching effect induced by the finite width of the flat plate increased the vorticities in the counter-rotating vortices due to the angular momentum conservation. The pressure coefficients of the wake-impinged flat plate were reduced because the formation of the counter-rotating vortices avoided the direct impingement of the freestream on the flat plate.

摘要 I ABSTRACT II 誌謝 IV 目錄 V 符號索引 VIII 圖表索引 X 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 流動控制 2 1.2.2 流體流經圓柱的流場特性 4 1.2.3 流體流經平板的流場特性 5 1.3 研究目標 6 第二章 實驗設備、儀器與方法 7 2.1研究構思 7 2.2 實驗設備 8 2.2.1 風洞 8 2.2.2 平板模型 9 2.2.3 尾流產生器 9 2.3 實驗儀器與方法 10 2.3.1 自由流的偵測 10 2.3.2 煙霧流場可視化 10 2.3.3 熱線風速儀尾流速度量測 13 2.3.4 質點影像速度儀 14 2.3.5 平板表面壓力量測 18 第三章 小圓柱尾流流場特徵 19 3.1 小圓柱尾流區流場與特徵模態 19 3.2 小直徑圓柱尾流區速度分佈 22 3.3 小直徑圓柱尾流區紊流強度 24 第四章 平板上游流場特徵 26 4.1 未受尾流衝擊平板之流場 26 4.1.1 垂直面 26 4.1.2 水平面 26 4.2 受尾流衝擊平板之垂直面流場 27 4.3流場特徵模態分區 35 4.4狀渦漩結構之特徵尺度 37 4.5水平面流場特徵 37 第五章 平板上游流場量化分析 46 5.1 特徵模態之速度向量流線圖 46 5.1.1 垂直面 46 5.1.2 水平面 51 5.2 特徵模態之渦度分布 56 5.2.1 垂直面 56 5.2.2 水平面 60 第六章 平板尾流 63 6.1 尾流可視化 63 6.1.1 未受小圓柱尾流衝擊平板 63 6.1.2 受小圓柱尾流衝擊平板 64 6.2 平板尾流流場量化分析 66 6.1.1 未受小圓柱尾流衝擊平板 66 6.1.2 受小圓柱尾流衝擊平板 66 第七章 平板的氣動力性能 68 7.1 平板表面壓力係數分佈 68 7.1.1小圓柱尾流衝擊不同寬度平板時,迎風面之平均壓力 68 第八章 結論與建議 71 8.1 結論 71 8.2 建議 73 參考文獻 74

[1] Nakayama, Y. and Boucher, R. F., Introduction to Fluid Mechanics, Arnold, Great Britain, 1999.
[2] Prandtl, L., “Über Flüssigkeitsbewegung bei sehr kleiner Reibung.” Proc. Third Int. Math. Congr., Heidelberg, Germany, 1904, pp. 484-491.
[3] In, K. M., Choi, D. H., and Kim, M. U., “Two-dimensional viscous flow past a flat plate,” Fluid Dynamics Research, Vol. 15, No. 1, 1995, pp. 13-24.
[4] Dennis, S. C. R., Qiang, W., Coutanceau, M., and Launay, J. L., “Viscous flow normal to a flat plate at moderate Reynolds numbers,” Journal of Fluid Mechanics, Vol. 248, Mar. 1993, pp. 605-635.
[5] Nakamura, Y., “Vortex shedding from bluff bodies and a universal strouhal number,” Journal of Fluids and Structures, Vol. 10, No. 2, 1996, pp. 159-171.
[6] Schewe, G., “Reynolds-number effects in flow around more-or-less bluff bodies,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 89, No. 14-15, 2001, pp. 1267-1289.
[7] Bearman, P. W. and Harvey, J. K., “Control of circular cylinder flow by the use of dimples,” AIAA Journal, Vol. 31, No. 10,1993, pp.1753-1756.
[8] Fiedler, H. E., “Control of free turbulent shear flows,” Flow Control-Fundamentals and Practices, edited by M. Gad-el-Hak, A. Pollard, and J. P. Bonnet, Springer-Verlag, Berlin, 1998, p.335-429.
[9] Gad-el-Hak, M., Flow Control-Passive, Active, and Reactive Flow Management, Cambridge University Press, New York, 2000.
[10] Ghee, T. A. and Leishman, J. G., “Unsteady circulation control aerodynamics of a circular cylinder with periodic jet blowing,” AIAA Journal, Vol. 30, No. 2, 1992, pp. 289-299.
[11] Strykowski, P. J. and Sreenivasan, K. R., “On the formation and suppression of vortex shedding at low Reynolds numbers,” Journal of Fluid Mechanics, Vol. 218, Sep. 1990, pp. 71-107.
[12] Wang, A. -B. and Chang, Y. -C., “Experimental investigation of suppression of vortex shedding from a circular cylinder,” Transactions of the Aeronautical and Astronautical Society of the Republic of China, Vol. 28, 1996, pp. 249-254.
[13] Sakamoto, H., Tan, K., and Haniu, H., “An optimum suppression of fluid forces by controlling a shear layer separated from a square Prism,” Journal of Fluids Engineering, Vol. 113, No. 2, 1991, pp. 183-189.
[14] Sakamoto, H. and Haniu, H., “Optimum suppression of fluid forces acting on a circular cylinder,” Journal of Fluids Engineering, Vol. 116, No. 2, 1994, pp. 221-227.
[15] Prasad, A. and Williamson, C. H. K., “A method for the reduction of bluff body drag,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 69-71, Jul-Oct 1997, pp. 155-167.
[16] Tsutsui, T. and Igarashi, T., “Drag reduction of a circular cylinder in an air-stream,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, No. 4-5, 2002, pp. 527-541.
[17] Bouak, F. and Lemay, J., “Passive control of the aerodynamic forces acting on a circular cylinder,” Experimental Thermal and Fluid Science, Vol. 16, No. 1-2, 1998, pp. 112-121.
[18] Lienhard, J. H., Synopsis of lift, drag and vortex frequency data for rigid circular cylinders, Research Division Bulletion 300, Washington State University, 1966.
[19] Huang, R. F., Chen, J. M., and Hsu C. M., “Modulation of surface flow and vortex shedding of a circular cylinder in the subcritical regime by self-excited vibration rod,” Journal of Fluid Mechanics, Vol. 555, May 2006, pp. 321-352.
[20] Zdravkovich, M. M., “Different modes of vortex shedding: an overview,” Journal of Fluids and Structures, Vol. 10, No. 5, 1996, pp. 427-437.
[21] Roshko, A, “On the wake and drag of bluff bodies,” Journal of Aeronautical Sciences, Vol. 22, No. 2, 1955, pp. 124-132.
[22] Tritton, D. J., “Experiments on the flow past a circular cylinder at low reynolds numbers,” Journal of Fluid Mechanics, Vol. 6, No. 4, 1959, pp. 547-567.
[23] Etkin, B., Kovbaoher, G. K., and Keefe, R. T., “Acoustic radiation froma stationary cylinder in fluid stream (aeolian tones),” The Journal of the Acoustical Society of America, Vol. 29, No. 1, 1957, pp. 30-36.
[24] Weaver, W., “Wind-induced vibrations in antenna members,” Journal of the Engineering Mechanics Division, ASCE, Vol. 87, No. 1, 1961, pp. 141-165.
[25] Gerrard, J. H., “An experimental investigation of the oscillating lift and drag of a circular cylinder shedding turbulent vortices,” Journal of Fluid Mechanics, Vol. 11, No. 2, 1961, pp. 244-256.
[26] Roshko, A., On the Development of Turbulent Wakes from Vortex Streets, NACA TN 2913, 1954.
[27] In, K. M., Choi, D. H., and Kim, M. U., “Two-dimensional viscous flow past a flat plate,” Fluid Dynamics Research, Vol. 15, No. 1, 1995, pp. 13-24.
[28] Dennis, S. C. R., Qiang, W., Coutanceau, M., and Launay, J. L., “Viscous flow normal to a flat plate at moderate reynolds numbers,” Journal of Fluid Mechaics, Vol. 248, Mar 1993, pp. 605-635.
[29] Nakamura, Y., “Vortex shedding from bluff bodies and a universal strouhal number,” Journal of Fluids and Structures, Vol. 10, No. 2,1996, pp. 159-171.
[30] Igarashi, T., Nobuaki, T., “Drag reduction of flat plate normal to airstream by flow control using a rod,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, No. 4-5, 2002, pp. 359-376.
[31] Sichlichting, H. Boundary layer theory, 7th ed, Mcgraw-Hill, New York, 1993, p. 699.
[32] Flagan, R. C. and Seinfeld J. H., Fundamentals of air pollution engineering, Prentice Hall, Englewood Cliffs, New Jersey, 1988, p.295-307.
[33] 張冠翔, 小圓柱尾流衝擊平板時的流場特徵與氣動力性能, 國立台灣科技大學機械工程研究所碩士論文, 2017.
[34] 張庭瑋, 平板受小圓柱尾流衝擊時之流場特徵與氣動力性能, 國立台灣科技大學機械工程研究所碩士論文, 2018

無法下載圖示 全文公開日期 2024/07/08 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE