簡易檢索 / 詳目顯示

研究生: 吳鈞珽
Jun-Ting Wu
論文名稱: 六自由度外差式散斑干涉儀之開發
Development of Six Degree-of-Freedom Heterodyne Speckle Interferometer
指導教授: 謝宏麟
Hung-Lin Hsieh
口試委員: 李朱育
吳文中
修芳仲
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 110
中文關鍵詞: 六自由度外差散斑干涉儀面內位移
外文關鍵詞: Six-DOF, Heterodyne, Speckle, Interferometer, In plane displacement
相關次數: 點閱:299下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究提出一套創新的六自由度外差式散斑干涉儀,用以進行精密位移及旋轉角度量測。此套外差式散斑干涉儀系統結合外差干涉術、散斑干涉術、對稱式光路和分光技術等技術之優勢,具備高解析度、大量測範圍及六自由度的量測性能。
此套六自由度外差式散斑干涉儀由外差光源模組及三組對稱式偵測架構所組成,每一組偵測架構皆可提供雙自由度的位移量測訊息。我們藉由電光調變器及氦氖雷射所構成的外差光源模組來產生外差光源,再透過光柵、Wollaston prism(WP)元件、及聚焦透鏡的使用來建構出創新的對稱式光路,使系統易於架設及校正。當外差光源先後通過光柵、WP元件及聚焦透鏡後,參考光及量測光將以對稱角度入射並交疊於一待測平面(紙面)後形成散射及干涉,再利用光電感測器來接收其干涉光強訊號。當待測平面沿著面內方向產生位移變化時,由待測平面到外差光源和由光感測器到待測平面的相對距離會隨入射角和觀察角發生改變,光的電場在相對距離發生兩次改變時,會因為都卜勒效應而隨之改變,我們可以藉由光感測器所量測到的散射光之相位變化量來回推待測平面之位移量變化量。
為了驗證此套六自由度外差式散斑干涉儀的可行性及其量測性能,我們分別使用商用六軸定位平台及長行程步進平台來進行多項實驗,並將干涉儀的量測結果與平台內建的電容式位移計與光學編碼器所量得的結果相比較。由實驗結果證明,本研究所開發的六自由度外差式散斑干涉儀可準確地提供六自由度的位移及旋轉角度量測訊息,其實際量測解析度約為10 nm及5 μrad,三軸向位移(x, y, z)之重複性為0.4 nm、0.4 nm、1.8 nm,三軸向旋轉角(θx, θy, θz)之重複性為2 μrad、3.5 μrad 、1.58 μrad,量測速度極限約為110 μm/s,具備優異的量測性能,可廣泛應用於機密機械、自動化光學檢測及工具機業等場合中。


In this study, a novel six-degree-of-freedom (DOF) heterodyne speckle interferometer for displacement and rotation angle precision measurement is proposed. The proposed system is combines the advantages of heterodyne interferometry, speckle interferometry, symmetrical optical path design and beam splitting technique, and possesses high resolution, large measurement range and multi-dimensional measurement capability.
The proposed six-DOF heterodyne speckle interferometer consists of a heterodyne light source and three sets of symmetrical measurement configurations, with each set providing two-DOF in-plane displacement information. The heterodyne light source is produced by means of an electro-optic modulator and a helium-neon laser, and the innovative symmetrical optical path configuration is constructed with a grating, a Wollaston prism, and a focusing lens, making the system easy to set up and calibrate. When the heterodyne light passes through the grating, WP and focusing lens, the reference and measurement light will be incident at a symmetrical angle and overlap on a measured plane to form scattering and interference, the intensity of which is then acquired by a photodetector. When in-plane motion occurs for the measure plane, its distance to the light source and the photodetector will change with the angle of incidence and the angle of observation, and the electric field of the beams will change due to the Doppler effect. The displacement and rotation angle of the measured plane can then be derived from the phase shift of the speckle pattern received by the photodetector.
To verify the feasibility and performance of the system, we used a commercial six-DOF positioning stage and a long-stroke stepping stage to carry out a number of experiments, and the system measurement results are compared with the results of the built-in capacitive displacement sensor and the optical encoder of the stages. The results show that the six-DOF heterodyne speckle interferometer can accurately provide measurement data of six-DOFdisplacement and rotation, the measurement resolution is about 10 nm, the repeatability of the x, y and z-axis displacement is 0.4 nm, 0.4 nm, 1.8 nm, the repeatability of θx, θy and θz axis rotation is 2 μrad, 3.5 μrad 1.58 μrad, and the measurement speed limit of the system is about 110 μm/s. This system displays excellent measurement performance and can be widely applied in fields such as precision manufacturing, automated optical measurement and machine tool industry.

摘要 Abstract 致謝 符號說明 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景 1.2 文獻回顧 2 1.2.1 同調干涉儀(術)之文獻回顧 1.2.2 外差干涉儀(術)之文獻回顧 1.2.3 散斑干涉儀之文獻回顧 1.2.4 多自由度干涉儀之文獻回顧 1.3 研究目的 1.4 論文架構 第二章 基礎理論 2.1 同調干涉術 2.2 外差干涉術 2.2.1 移動(旋轉)光柵法 2.2.2 旋轉波片法 2.2.3 賽曼雷射 2.2.4 聲光調制產生外差光源 2.2.5 電光調制產生外差光源 2.2.6 波長調制產生外差光源 2.3 散斑干涉術 2.3.1 都卜勒移頻 2.3.2 散斑干涉術 2.4分光技術應用於多自由度量測 2.5 外差訊號相位解調 2.6 小結 3.1 單自由度外差散斑干涉儀 3.2 雙自由度外差式散斑干涉儀 3.3 三自由度外差式散斑干涉儀 3.4 五自由度外差式散斑干涉儀 3.5 六自由度外差式散斑干涉儀 3.6 相位解調系統 3.7 系統所需之光學元件&實驗儀器 3.8 小結 第四章 實驗結果與討論 4.1單自由度(x)量測實驗 4.2雙自由度(x, y)量測實驗 4.3三自由度(x, y, θz)量測實驗 4.4 五自由度之實驗結果(x, y, z, θx, θz) 4.5 六自由度之實驗結果(x, y, z, θx, θy, θz) 4.6 量測系統性能測試與討論 4.6.1 解析度量測 4.6.2重複度量測 4.6.3 量測速度極限 第五章 誤差分析 5.1 系統誤差 5.1.1 偏振元件擺放誤差所引之相位誤差量 5.1.2 電光調變器(EOM)對位誤差所引入之相位誤差 5.1.3 待測紙面對位誤差 5.15 感測器對位誤差 5.2 隨機誤差 5.2.1 環境振動 5.2.2環境溫度變化 5.2.3 電子雜訊 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

[1] Fleming and Andrew J., “A review of nanometer resolution position sensors: Operation and performance,” Sensor Actuat A-phys, 190, pp.106-126, 2013.
[2] Alexia, et al., “New simple optical sensor: From nanometer resolution to centimeter displacement range,” Sensor Actuat A-phys, 176, pp.46-52, 2012.
[3] Kang, L. Hyong, D. K. Kim, and J.H. Han, “Estimation of dynamic structural displacements using fiber Bragg grating strain sensors,” J. Sound Vib., 305, pp.534-542, 2007.
[4] Armen, et al., “Strain-based deformation shape-estimation algorithm for control and monitoring applications,” AIAA J., 2013.
[5] Avila, A. Brau, J. S. Mazo, and J. J. A. Martín, “Design and mechanical evaluation of a capacitive sensor-based indexed platform for verification of portable coordinate measuring instruments,” Sensors, 14, pp.606-633, 2014.
[6] K. Hane, Y. Uchida, and S. Hattori, “Moiré displacement measurement technique for a linear encoder,” Opt. Laser Technol., 17, pp.89-95, 1985.
[7] P. Shi and E. Stijns, “Improving the linearity of the Michelson interferometric
angular measurement by a parameter compensation method,” Appl. Opt., 32,
pp.44-51, 1993.
[8] L. Lipiainen, K. Kokkonen, O. Holmgren, and M. Kaivola, “Method for Phase Sensitive Measurements of Surface Vibrations Using Homodyne Interferometry without Stabilization,” Optics and Photonics Department of Applied Physics. pp.1-4, 2009.
[9] C. L. Ji and C. Y. Gao, “Research on refractive index changes of CSBN crystals under external electric field based on Michelson interferometer,” Opt. Lasers Eng., 48, pp.1170-1173, 2010.
[10] H. Kikuta, K. Iwata, and R. Nagata, “Distance measurement by the wavelength shift of laser diode light,” Appl. Opt., 25, pp.2976-2980, 1986.
[11] D. Pantzer, et al., “Heterodyne profiling instrument for the angstrom region,” Appl. Opt., 25, pp.4168-4172, 1986.
[12] D. C. Su, J. Y. Lee, and M. H. Chiu, “New type of liquid refractometer,” Opt. Eng., 37, pp.2795-2797, 1998.
[13] M. H. Chiu and D. C. Su, “Improved technique for measuring small angle,” Appl. Opt., 36, pp.7104-7106, 1997.
[14] T. Suzuki and R. Hioki, “Translation of light frequency by a moving grating,” J. Opt. Soc. Am., 57, pp.1551, 1967.
[15] W. H. Stevenson, “Optical frequency shifting by means of a rotating diffraction grating,” Appl. Opt., 9, pp.649-652, 1970.
[16] Y. Li and G. Eichmann, “Multipass counterrotating wave-plate frequency shifters for heterodyne interferometry,” Optics Letters., 11, pp.718, 1986.
[17] J. A. Dahlquist, D. G. Peterson, and W. Culshaw, “Zeeman laser interferometer,” Appl. Phys. Lett. 9, pp.181, 1966.
[18] Choi, Hyunseung, Jongpil La, and Kyihwan Park, “Electronic frequency modulation for the increase of maximum measurable velocity in a heterodyne laser interferometer,” Rev. Sci. Instrum., 10, 2006.
[19] P. Y. Chien, Y. S. Chang, and M. W. Chang, "Distance and velocity detection based on a deep sinusoidal phase-modulated interferometer," Applied Optics, Vol. 34, pp. 6373-6375 (1995)
[20] M. G. Gazalet, M. Ravez, F. Haine, C. Bruneel, and E. Bridoux, “Acousto-optic low-frequency shifter,” Appl. Opt. 33, pp.1293-1298, 1994.
[21] 鄭晏如,「波長位移量測用干涉儀」,國立台北科技大學,碩士論文,2006。
[22] D.C. Su, M.H. Chiu, and C.D. Chen, “Simple two-frequency laser,” Precision Engineering-Journal of the American Society for Precision Engineering. 18, pp.161-163, 1996.
[23] J. Y. Lee, et al., “Optical heterodyne grating interferometry for displacement
measurement with subnanometric resolution,” Sens. Actuators A, 137,
pp.185-191, 2007.
[24] C. C. Hsu, C. C. Wu, J. Y. Lee, H. Y. Chen, and H. F. Weng, “Reflection type heterodyne grating interferometry for in-plane displacement measurement,” Opt. Commun. 281, pp.2582-2589, 2008.
[25] P. Jacquot, “Speckle Interferometry: A Review of the Principal Methods in Use for Experimental Mechanics Applications,” Strain, 44, pp.57-69, 2008.
[26] R. Dändliker and J. F. Willemin, “Measuring microvibrations by heterodyne speckle interferometry,” Optics Letters, 6, pp.165, 1981.
[27] T. Thurner, “Novel Distance Sensor Principle based on Objective Laser Speckles,” I2MTC 2008 - IEEE International Instrumentation and Measurement Technology Conference Victoria, Canada, pp.1898-1903, 2008.
[28] Yang, et al., “Advanced optical methods for whole field displacement and strain measurement.” ISOT, IEEE, 2010.
[29] J. Y. Lee, K. Y. Lin, and S. H. Huang, “Wavelength-modulated heterodyne speckle interferometry for displacement measurement,” Proc. SPIE., 7389, pp.73892G, 2009.
[30] 郭柏鈞,「雙自由度外差式雷射散斑干涉儀」,國立台灣科技大學,碩士論文,2016。
[31] Fan, K. Chao, and M. J. Chen, “A 6-degree-of-freedom measurement system for the accuracy of XY stages,” Precis. Eng., 24, pp.15-23, 2000.
[32] Madden, R. Michael, “Silicon position sensing detectors for precision measurement and control,” SPIE., 153, 1978.
[33] Q. Chen, D. Lin, J. Wu, J. Yan, and C. Yin, “Straightness/coaxiality measurement system with transverse Zeeman dual-frequency laser,” Meas. Sci. Technol. 16, pp.2030–2037, 2005.
[34] M. Aketagawa, M. Madden, S. Uesugi, T. Kumagai, Y. Maeda, and E. Okuyama, “Spindle error motion measurement using concentric circle grating and phase modulation interferometers,” Proc. SPIE, 8563, p.85630C, 2012.
[35] Hsieh, H. Lin, and S. W. Pan, “Three-degree-of-freedom displacement measurement using grating-based heterodyne interferometry,” Appl. Opt., 52, pp.6840-6848, 2013.
[36] Huang, et al., “Five-degrees-of-freedom measurement system based on a monolithic prism and phase-sensitive detection technique,” Appl. Opt., 52, pp.6607-6615, 2013.
[37] Li, et al., “A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage,” Precis. Eng., 37, pp.771-781, 2013.
[38] 陳暐,「六自由度Wollaston雷射光學尺」,國立台灣科技大學,碩士論文,2016。
[39] Lee, ChaBum, G. H. Kim, and S. K. Lee, “Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultraprecision linear stage,” Meas. Sci. Technol., 22, pp.105901, 2011.
[40] Reinshaw公司網站: http://www.renishaw.com/en/renishaw-unveils-the-new-xm-60-multi-axis-calibrator--39275,2016
[41] P.K. Rastogi, "Optical measurement techniques and applications", 1997: Artech House.

QR CODE