簡易檢索 / 詳目顯示

研究生: MAINA MOSES MBURU
MAINA MOSES MBURU
論文名稱: 程序方法與實驗條件對於PFO選擇性分散大管徑單壁奈米碳管的影響
Methods Process and Experimental Conditions Impacts on PFO Sorting of Large Diameter Single Wall Carbon Nanotubes
指導教授: 邱昱誠
Yu-Cheng Chiu
口試委員: 江偉宏
Wei-Hung Chiang
顏宏儒
Hung-Ju Yen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 76
中文關鍵詞: PFO SortingLarge diameter SWCNTsSonicationCentrifugation
外文關鍵詞: PFO Sorting, Large diameter SWCNTs, Sonication, Centrifugation
相關次數: 點閱:333下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

若要藉由溶液製程將SWCNT做成高性能的電子元件,關鍵在於如何成功的分離金屬性質與半導體性質的SWCNT。現行多種方法中,利用高分子包覆SWCNT是最有效的方式。目前發現共軛高分子可以選擇性的分散半導體性質之SWCNT。聚芴(PFO)的衍生物是最早報導的聚合物之一。但是它只能用來分離小管徑之SWCNT。根據文獻研究的結果,它無法用來選擇性分散大管徑的SWCNT。這使得大管徑SWCNT在電子元件的領域中只有較少的應用。據研究指出,溶劑和分子結構對於選擇性分散SWCNTs的影響是至關重要的,因此大家專注在有利於聚合物-SWCNT相互作用的溶劑和高分子之結構。著重在摻入芳香族單體來改性共軛聚合物主鏈結構、較長烷基之側鏈或富電子或缺電子部分對於選擇性分散的影響。而比較少人著重在製程方法與實驗參數這些可能會對結果產生巨大影響的地方。在此研究中我們發現了分離程序與實驗條件對選擇性分散SWCNT之巨大影響。例如: 在室溫下,較低的高分子與SWCNT比例、較少的超音波分散時間與較低的離心時間與功率,結果都顯示出PFO不具有分散大管徑SWCNT的能力。但在我們調整這些條件後,卻得到了不同的結果。我們在利用PFO選擇性分散SWCNT的實驗中利用改良的製程與實驗參數而得到了管徑為1.4-1.73 nm的SWCNT。SWCNT與高分子的比例為1:4,因與較小管徑的SWCNT相比,大管徑的SWCNT具有較大的表面積,而足夠的高分子確保了與大管徑SWCNT之間的作用力。我們將超音波震盪的時間提升為兩小時,並以每30分鐘加入冰塊的方式確保能分散較硬之大管徑SWCNT束。我們也將離心參數調整為48000g、1小時並維持溫度為4C以達到分離的效果。最後使用五種分析方法,例如 U.V.、PLE、AFM、RAMAN光譜與半導體分析儀對結果作鑑定分析。藉由AFM的影像我們發現了單獨分散的SWCNT,且在後續的分析中發現其具有金屬與半導體性質。


Abstract.

Successful separation of metallic and semiconducting nanotubes from raw single wall carbon nanotubes (SWCNT) is a key step in making of high-performance, solution-processed electronics. Among various methods proposed to achieving this, polymer wrapping found to be most efficient. Conjugated polymer found to selectively disperse and sort s-SWCNTs simultaneously. Poly(9,9-dioctylfluorene) (PFO); a derivative of polyfluorene was among the first reported polymers. However, its use has been limited to sorting small diameter SWCNTs. It has been reported to be incapable of sorting large diameter nanotubes and this makes it less utilized in sorting of SWCNTs required for most electronics. The effect of solvents and molecular architecture on the selective dispersion and sorting of SWCNTs through this method, reported to be crucial and therefore more attention has been taken on solvent and structures which favors polymer-SWCNT interaction. A significant focus has been on modification of conjugated polymer backbone structure through incorporation of aromatic monomer, longer alkyl side chain, electron rich or electron deficiency moieties. Less attention has been given to sorting method process and experimental conditions and this may have a great influence on sorting process as well. In this work the effects of method process and experimental conditions were investigated and it was found to have great effects on the final results i.e. Low polymer to SWCNTs ratio, less sonication and centrifugation time and power at normal temperature, resulted to incapability of PFO to disperse large diameter but on adjustment of these conditions, positive results were recorded. In this work successful dispersion of large diameter SWCNTs (1.4-1.73nm) by PFO-commercial is reported. This was achieved after modification of process and experimental conditions from that reported in previous works. (11, 36, 37) The SWNTs-Polymer ratio was adjusted to 1:4 which ensures enough polymer amount to interact with large diameter nanotubes which have larger surface area as compared with small diameter SWNTs. Sonication conditions was modified by increasing sonication time to 2hrs with addition of ice after every 30min to ensure enough time for proper dispersion of more stiff large diameter nanotubes bundles. Centrifugation condition was also modified by using high centrifugation force i.e. 48000g for 1hr at 4℃ to ensure there is required speed for components separation. Five analysis methods i.e. U.V., PLE, AFM, RAMAN spectroscopy and TRANSISTOR analysis were used in this work. AFM images shows dispersed individual nanotubes in supernatant which in father analysis found to cause both metallic and semiconducting properties.

Table of Contents. Abstract. i Acknowledgment. iv Table of Contents. v List of Abbreviations. viii List of Figures. x List of Tables. xii 1.0 Introduction. 1 2.0 Literature Review. 4 2.1 Single wall carbon nanotubes (SWCNT). 4 2.1.1 Discovery. 4 2.1.2 Synthesis methods. 4 2.1.3 Characterization, properties and classification of SWCNTs. 6 2.1.4 SWCNTs analysis methods. 10 2.1.5 SWCNTs Separation methods. 15 2.2 Factors affecting SWCNTs sorting by conjugated polymers. 18 2.2.1 Polymer Molecular weight. 18 2.2.2 Polymer to SWCNT ratio. 20 2.2.3 Sonication temperature and time. 22 2.2.4 Centrifugation time and force. 23 3.0 Methodology / Experimental Section. 25 3.1 Introduction. 25 3.2 Material and reagents. 25 3.3 Instrument and equipment. 26 3.4 Experimental process. 28 4.0 Result and discussion. 30 4.1 Molecular weight. 30 4.2 Polymer SWCNT ratio. 31 4.3 Sonication time and temperature. 32 4.4 Centrifugal force. 33 5.0 Electronic properties of the dispersed nanotubes. 38 5.1 The PL mapping analysis. 38 5.2 Chirality n, m assignment. 41 5.3 Chiral angle determination. 43 5.4 Transistor properties analysis. 43 5.4.1 Substrate preparation. 44 5.4.2 Sample Deposition and Transistor Fabrication. 44 5.4.3 Transistor analysis and results. 45 5.4.4 More research on AFM and Transistor 46 6.0 Polymer - SWCNTs interaction and sorting. 48 6.1 Large diameter SWCNT – Polymer interaction. 48 6.2 Possible sorting mechanism. 50 6.3 Further research on SWCNT – polymer interaction mechanism. 51 6.4 Viable prove for suggested sorting mechanism. 52 7.0 Conclusion. 55 References 56

References

1. J.M. Salazar‐Rios, W. Talsma, V. Derenskyi… - Smal, 1700335 (2018) 1-9- Wiley Online Library.
2. W. Gomulya, J.M. Salazar Rios, V. Derenskyi, S.Z. Bisri, S.Jung, M. Fritsch, S. Allard, U. Scherf, M.C. dos Santos, M.A.Loi, Carbon 84 (2015) 66—73.
3. H.W. Lee, Y. Yoon, S. Park, J.H. Oh, S. Hong, L.S. Liyanage, H. Wang, S. Morishita, N. Patil, Y.J. Park, J.J. Park, A. Spakowitz, Galli, F. Gygi, P.H.S. Wong, J.B.H. Tok, J.M. Kim, Z. Bao, Nat. Commun. 2 (2011) 541.
4. B Koh, W Cheng - Journal of pharmaceutical sciences, 104 (2015) 8 – Elsevier.
5. K.S. Mistry, B.A. Larsen, J.L. Blackburn, ACS Nano 7 (2013) 2231—2239.
6. J. Ding, Z. Li, J. Lefebvre, F. Cheng, G. Dubey, S. Zou, P. Finnie, A. Hrdina, L. Scoles, G.P. Lopinski, C.T. Kingston, B. Simard, P.R.L. Malenfant, Nanoscale 6 (2014) 2328—2339.
7. W. Xu, J Zhao, L. Qian, X Han, L. Wu, W. Wu, M. So - Nanoscale, ,6, (2014) 1589 –1595 - pubs.rsc.org.
8. F. Jakubka, S.P. Schießl, S. Martin, J.M. Engler - ACS Macro, 1, 7, (2012) 815-819 - ACS Publications.
9. B.C. Schroeder, T. Kurosawa, T. F.- Advanced Functional, 1701973 (2017) 1-8 - Wiley Online Library.
10. N. Berton, F. Lemasson, F. Hennrich, M.M. Kappes, M. Mayor, Chem. Commun. 48 (2012) 2516—2518.
11. F. Chen, B. Wang, Y. Chen, L.J Li - Nano letters, 7, (2007) 10- ACS Publications.
12. H. Wang, Z. Bao - Nano Today, (2015) 737-758 – Elsevier
13. J.A. Rogers, T. Someya, Y.G. Huang, Materials and mechanics for stretchable electronics, Science (New York, N.Y.) 327 (5973) (2010) 1603–1607.
14. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London 1998.
15. P. Avouris, J. Appenzeller, R. Martel, S. J. Wind, Proc. IEEE 9, (2003), 1772
16. P. W. Barone, S. Baik, D. A. Heller, M. S. Strano, Nat. Mater. 4, (2005), 86.
17. L. Liang, W. Xie, S. Fang, F. He, B. Yin, C. Tlil - Journal of Materials, 5, (2017), 11339-11368 - pubs.rsc.org
18. M. Tange, T. Okazaki, S. Iijima - Journal of the American Chemical, 133, (2011), 11908–11911- ACS Publications.
19. C. Wang, J.C. Chien, K. Takei, T. Takahashi, J. Nah, A.M. Niknejad, A. Javey, Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications, Nano Lett. 12 (3) (2012) 1527–1533.
20. D. Song, F.Z. Bidoky, W.J. Hyun, S.B. Walker, J.A. Lewis, C.D. Frisbie, All-printed, self-aligned carbon nanotube thin-film transistors on imprinted plastic substrates, ACS Appl. Mater. Interfaces 10, (2018) 15926–15932.
21. Z. Li, J. Ding, C. Guo, J. Lefebvre, P.R.L. Malenfant, Decomposable s-tetrazine copolymer enables single-walled carbon nanotube thin film transistors and sensors with improved sensitivity, Adv. Funct. Mater. 28 (13) (2018) 1705568.
22. Y. He, H. Luo, H. Jin, S. Qiu, Q. Li - Polymer, 172, (2018) –1091–1107 Elsevier
23. K. Suemori, Y. Watanabe, S. Hoshino - Applied Physics Letters, 2015 - aip.scitation.org
24. T. Tanaka, H. Jin, Y. Miyata, S. Fujii, H. Suga, Y. Naitoh, T. Minari, T. Miyadera, K. Tsukagoshi, H. Kataura, Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes, Nano Lett. 9 (4) (2009) 1497–1500.
25. S. Ghosh, S.M. Bachilo, R.B. Weisman, Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation, Nat. Nanotechnol. 5 (2010) 443–450.
26. R. Krupke, F. Hennrich, H. Lohneysen, M.M. Kappes, Separation of metallic from semiconducting single-walled carbon nanotubes, Science 301, (2003) 344–347.
27. J. Ouyang, J. Ding, J. Lefebvre, Z. Li, C Guo, A.J. Kel- ACS, 12, 2, (20180 1910-1919- ACS Publications.
28. H. Wang, Z. Bao, Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications, Nano Today 10, (2015) 737–758.
29. S.Z. Bisri, J. Gao, V. Derenskyi, W. Gomulya, I. Iezhokin, P. Gordiichuk, A. Herrmann, M.A. Loi, High performance ambipolar field-effect transistor of random network carbon nanotubes, Adv. Mater. (Deerfield Beach, Fla.) 24, (2012) 6147–6152.
30. S.K. Doorn, M.S. Strano, M.J. O'Connell Physical Chemistry B, 107, 25, (2003) 6063-6069- ACS Publications.
31. M.S. Strano, S.K. Doorn, E.H. Haroz, C. Kittrell… - Nano Letters, 3, 8, (2003) 1091-1096- ACS Publications.
32. HW Lee, Y Yoon, S Park, JH Oh, S Hong… - Nature, 1545, (2011) 8- nature.com
33. Martel, R. ACS Nano 2008, 2, 2195–2199.
34. Nish, A.; Hwang, J.-Y.; Doig, J.; Nicholas, R. J. Nature Nanotechnol. 2007, 2, 640–646
35. H. C. Wu, X. L. Chang, L. Liu, F. Zhao and Y. L. Zhao, Chemistry of carbon nanotubes in biomedical applications, J. Mater. Chem., 2010, 20, 1036–1052.
36. K.S. Mistry, B.A. Larsen, J.L. Blackburn - ACS nano, 2013 - ACS Publications
37. W Xu, J Zhao, L Qian, X Han, L Wu, W Wu, M Son - Nanoscale, 2014 - pubs.rsc.org
38. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio - Physics reports, 409, (2005) 47-99– Elsevier.
39. M.S. Dresselhaus, G. Dresselhaus, A. Jori - Carbon, 40, (2002) 2043-2061– Elsevier.
40. P.J. Goutam, D.K. Singh, P.K. Iyer -Journal of Physical Chemistry C, 116, 14, (2012) 8196-8201- ACS Publications.
41. R. Saito, A. Jorio, AG Souza Filho, A Grueneis- Physica B: Condensed, 3, (2008) 83-108– Elsevier.
42. J.Y. Hwang, A. Nish, J. Doig, S. Douve - Journal of the …, 130, 11, (2008), 3543-3553- ACS Publications.
43. Y. Huang, S. Xiu, H. Niu, Y. Lian - Science of Advanced Materials, 2017 - ingentaconnect.com.
44. X. He, W. Gao, L. Xie, B. Li, Q. Zhang, S. Le - Nature, 11, (2016), 633–638 - nature.com
45. L. Wei, B. Wang, Q. Wang, LJ Li, Y. Yan - The Journal of Physical, 112, 45, (2008) 17567-17575- ACS Publications.
46. J. Gao, R. Annema, M.A. Loi - The European Physical Journal B, 246, (2012) 5– Springer
47. W. Gomulya, J.M.S. Rios, V. Derenskyi, S.Z. Bisri, S. Jun - Carbon, 84, (2015) 65-73– Elsevier.
48. J. Han, Q Ji, S Qiu, H Li, S Zhang, H Jin… - Chemical, 2015 - pubs.rsc.org
49. H Li, Q Li - Electronic Properties of Carbon Nanotubes, 2011 - intechopen.com
50. S. Iijima, Nature 354, (1991), 56.
51. S. Iijima, T. Ichihashi, Nature 363, (1993), 603.
52. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, 1998
53. J. Maultzsch, H. Telg, S. Reich, C. Thomsen - Physical Review 16, (2005) 205438– APS
54. R.K Bradley, F Rohmund, DT Colbert, KA Smith - Chemical physics, 313, (1999) 91-97– Elsevier.
55. S.J. Tans, MH Devoret, H Dai, A Thess, RE Smalley - Nature, 1997 - nature.com
56. A.A. Green, M.C. Hersam - Nano letters, 2008 - ACS Publications.
57. W. Wang, K.A.S. Fernando, Y Lin… - Journal of the, 130, 4, 2008 –1415-1419 ACS Publications.
58. T. Maruyama, H. Kondo, R. Ghosh, A. Kozawa - Carbon, 93, (2016) 6-13– Elsevier.
59. H. Dai - Accounts of chemical research, 35, 12, (2002) –1035-1044 ACS Publications.
60. R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smit - Chemical physics, 313, (1999) 91-97– Elsevier.
61. A.H. Sari, A. Khazali, S.S. Parhizgar - International Nano Letters, 8, (2018), 19–23– Springer.
62. B.A Diner, R.S. McLean, S.R. Lustig, R.E. Richardson - Nature materials, 2, (2003), 338–342- nature.com.
63. C.D. Von Bargen, CM MacDermaid, OS Le- The Journal of, 117, 42, (2013) 12953-12965- ACS Publications.
64. A. Nish, J.Y. Hwang, J. Doig, R.J. Nicholas - Nature nanotechnology, 2, (2007) 640–646- nature.com.
65. H. Wang, B. Cobb, A. van Breemen - Advanced, 26, (2014), 4588-4593 Wiley Online Library.
66. A.A. Green, J.F. Hulvat, SI Stupp, M.C. Hersam -nanotechnology, 1, (2006), 60–65- nature.com.
67. P Imin, F. Cheng, A. Adronov - Polymer Chemistry, 2011 - pubs.rsc.org
68. K. Safarova, A Dvorak, R Kubinek, M Vujte - Modern Research and, 2007 – Citeseer
69. G. Sfuncia - 2014 - Università di Catania.
70. A. Jorio, MA Pimenta, AG Souza Filho - New Journal of, 2003 - iopscience.iop.org
71. S.M. Bachilo, MS Strano, C Kittrell, R.H. Hauge, 2002 - science.sciencemag.org
72. A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, D.M. Hunter- Physical Review Letters, 2001 - APS

無法下載圖示 全文公開日期 2024/07/23 (校內網路)
全文公開日期 2034/07/23 (校外網路)
全文公開日期 2039/07/23 (國家圖書館:臺灣博碩士論文系統)
QR CODE