簡易檢索 / 詳目顯示

研究生: 王彗珊
Huei-Shan Wang
論文名稱: 雷射加工心血管支架的後處理製程研究
Development of Post Treatment Process for Laser Cutting Cardiovascular Stents
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 楊錫杭
Hsi-harng Yang
張以全
I-Tsyuen Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 136
中文關鍵詞: 不鏽鋼支架漿體噴射研磨酸洗電解拋光
外文關鍵詞: stainless steel stent, slurry jet grinding, acid pickling, electro-polishing
相關次數: 點閱:267下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近幾年氣球擴張術和支架放置術已是治療冠狀動脈嚴重阻塞和狹窄的主要方式之一。血管支架放置術為利用心導管將血管支架送入冠狀動脈內,將狹窄或阻塞的部位撐開,以增加冠狀動脈的血流量。316L不鏽鋼為氣球擴張型支架的主要選用材料之一,其優點為生物相容性較高、有適當的強度和彈性、能抗疲勞及具有良好加工成形性等。
本研究針對以光纖雷射加工的316L不鏽鋼生醫心血管支架,開發其後處理製程。研究中以新的漿體噴射研磨(slurry jet grinding) 技術取代傳統的噴砂技術對雷射加工後支架進行研磨,之後使用酸洗和電解拋光技術對支架進行表面平整化和拋光處理。漿體噴射研磨研究探討了研磨漿體衝擊角度、氣壓大小、漿體黏滯係數和流速對加工後支架表面的影響,除此之外在本研究中,利用商用CFD (computational fluid dynamics)軟體以有限體積法(finite volume method, FVM),模擬於漿體噴射研磨中不鏽鋼支架在不同外管徑下之加工行為特徵。酸洗處理部分主要探討酸洗時間對支架表面的影響。電解拋光研究主要探討電壓、時間、重量移除百分比等操作參數之最佳化,以達到支架表面有最佳的亮度,並去除原始尖銳邊緣使支架邊緣圓角化,以避免使用支架進行治療時可能造成器官非期望性的損傷。完成後的血管支架直徑2mm長度20mm並置入氣球導管上,以測試其可壓縮和擴張性。


Angioplasty and stent placement surgery have become the major treatment for coronary artery occlusion and severe stenosis. Stent placement surgery uses cardiac catheter to place a metal stent into the coronary stent and expand it to deal with the stenosis or obstruction of the distraction site to increase coronary blood flow. The most common material used for balloon-dilatation stent is 316L stainless steel. 316L stainless steel has high biocompatibility, sufficient strength and toughness, suitable hardness and elasticity, fatigue resistance and good formability in manufacturing process.
In this study, experiments were performed to optimize the post treatment processes, including slurry jet grinding (SJG), acid pickling and electro-polishing, for laser cutting stainless steel cardiovascular stents. Slurry jet grinding is a new method to grind the laser cutting stents, instead of conventional sand blasting. Experiments were proceeded to study the effect of particle impingement angle, air pressure, slurry viscosity and fluid velocity on the grinded stent profile and surface quality. In addition, a commercial computational fluid dynamics (CFD) software based on the finite volume method (FVM) was used for simulating the outer tube diameter effect on the process behaviors and characteristics in slurry jet grinding. The simulation results were compared with experiments. In the study of acid pickling time influence on stent surface characteristics is focused. Several electro-polishing parameters, including applied voltage, time and total removed weight percentage, were investigated in this work to optimize the electro-polishing process for achieving better surface roughness and edge rounding. Finally, the fabricated cardiovascular stents, with diameter 2 mm and length 20 mm, were crimped into a catheter to investigate their compressibility and expandability.

摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 、緒論 1.1前言 1.2研究動機與目的 第二章 、文獻回顧 2.1血管支架 2.2生醫材料 2.3磨耗種類 2.4沖蝕磨耗(Erosive wear) 2.5噴砂原理與特性 2.5.1噴砂技術文獻回顧 2.6漿體噴射研磨原理與特性 2.6.1漿體噴射研磨文獻回顧 2.7酸洗原理與特性 2.7.1酸洗技術文獻回顧 2.8電解拋光原理 2.8.1電解拋光簡介 2.8.2電解拋光整平及亮化 2.8.3電解拋光I-V曲線圖 2.8.4電解拋光技術文獻回顧 第三章 、研究方法 3.1實驗試片材料與製作 3.2實驗設計及參數規劃 3.2.1噴砂參數 3.2.2漿體噴射研磨加工參數 3.2.3酸洗參數 3.2.4電解拋光參數 3.3不鏽鋼支架實驗 3.3.1噴砂實驗與設備介紹 3.3.2漿體噴射研磨實驗與設備介紹 3.3.2.1漿體噴射研磨加工流體分析實驗 3.3.2.2分析模擬設置 3.3.3酸洗實驗與設備介紹 3.3.4電解拋光實驗與設備介紹 3.4 實驗檢測分析儀器 3.4.1掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 3.4.2 光學顯微鏡(Optical Microscope,OM) 3.4.3表面粗度儀(Hommel-Tester T400) 3.4.4超音波洗淨機 3.4.5分析天平(Analytical Balances) 3.4.6黏度計 第四章、實驗結果與討論 4.1噴砂處理、漿體噴射研磨處理 4.1.1噴砂實驗 4.1.1.1噴砂氣壓對不鏽鋼影響 4.1.1.2 不鏽鋼圓管噴砂實驗 4.1.1.3 噴砂不鏽鋼支架 4.1.2漿體噴射研磨加工實驗 4.1.2.1沖擊角度對沖蝕率的影響 4.1.2.2漿體噴射研磨流體分析 4.1.2.3管徑大小對不鏽鋼支架影響 4.1.2.4氣壓大小對不鏽鋼支架影響 4.1.2.5漿體噴射研磨不鏽鋼支架的支架成品 4.1.2.6噴砂與漿體噴射研磨差異 4.2 酸洗實驗 4.2.1 酸洗時間對不鏽鋼影響 4.2.2 酸洗不鏽鋼圓管 4.2.3 酸洗不鏽鋼支架 4.3 電解拋光實驗 4.3.1拋光重量移除百分比對不鏽鋼影響 4.3.2電解拋光電壓值對不鏽鋼影響 4.3.3 不鏽鋼支架電解拋光 第五章、結論與未來展望 5.1支架後處理結論 5.2支架邊緣圓角化 5.3未來展望 參考文獻

[1]工業技術研究院,2015醫療器材產業年鑑,財團法人工業技術研究院產業經濟與趨勢研究中心, 6月,2015
[2]王瑞玲,心臟回春術-讓你一次完全了解心臟支架,開啟文化事業有限公司,4月,2009
[3]陳冠宇,「血管支架之製造與生物應用之研究」,碩士論文,國立台北科技大學,2003。
[4]俞耀庭,生物醫用材料,新文京開發出版股份有限公司,7月,2004
[5]J.T. Burwell, C.D. Strange, Metallic wear, Proceedings of the Royal society of the London, Series A, Mathematical and Physical Science,Vol.212,pp.470-477(1952).
[6]楊春欽,摩擦與磨耗,科技圖書有限公司,5月1984
[7]章光耀,中碳鋼被附陶瓷粉末之顯微結構與沖蝕磨耗行為之研究,博士論文,國立臺灣科技大學機械工程系,2014
[8]Z.G. Karl-Heinz. 1987. Micorostructure and wear of materials. New York, USA: Elsevier Science Publishers B.V.
[9]劉紫煒,「生醫鎳鈦支架後處理方法之研究」,碩士論文,國立臺灣科技大學,2015。
[10]U. Gbureck , A. Masten, J. Probst, and R. Thull. 2003. 'Tribochemical structuring and coating of implant metal surfaces with titanium oxide and hydroxyapatite layers', Materials Science and Engineering: C, 23: 461-65.
[11]J. Qu, J.S. Albert, O.S. Ronald, and L. Jie 2005. 'Abrasive micro-blasting to improve surface integrity of electrical discharge machined WC–Co composite', Journal of Materials Processing Technology, 166: 440-48.
[12]M. Multigner, , E. Frutos, J. L. González-Carrasco, J. A. Jiménez, P. Marín, and J. Ibáñez. 2009. 'Influence of the sandblasting on the subsurface microstructure of 316LVM stainless steel: Implications on the magnetic and mechanical properties', Materials Science and Engineering: C, 29: 1357-60.
[13]C.Y. Zheng, F. L. Nie, Y. F. Zheng, Y. Cheng, S. C. Wei, and R. Z. Valiev. 2011. 'Enhanced in vitro biocompatibility of ultrafine-grained biomedical NiTi alloy with microporous surface', Applied Surface Science, 257: 9086-93.
[14]B. Arifvianto, K.A. Wibisono Suyitno, and M. Mahardika. 2012. 'Influence of grit blasting treatment using steel slag balls on the subsurface microhardness, surface characteristics and chemical composition of medical grade 316L stainless steel', Surface and Coatings Technology, 210: 176-82.
[15]F. Keady, and B. P. Murphy. 2013. 'Investigating the feasibility of using a grit blasting process to coat nitinol stents with hydroxyapatite', Journal of Materials Science: Materials in Medicine, 24: 97-103.
[16]S. Geng, S. Junsheng, and G. Lingyu 2015. 'Effect of sandblasting and subsequent acid pickling and passivation on the microstructure and corrosion behavior of 316L stainless steel', Materials & Design, 88: 1-7.
[17]任玉军, 葛国军, and 李军. 2014. '湿法抛丸中浆体磨料的进料机制及破坏机理分析', 冶金设备, 2: 013.
[18]R.E. Williams, and R.P Kamlakar 1992. 'Stochastic modeling and analysis of abrasive flow machining', Journal of engineering for industry, 114: 74-81.
[19]R.E. Williams, and R.P Kamlakar 1989. "Metal removal and surface finish characteristics in abrasive flow machining." In New York, USA, American Society of Mechanical Engineers.
[20]R.E. Williams, KP Rajurkar, and LJ Rhoades. 1989. 'Performance characteristics of abrasive flow machining', Non-Traditional Machining: 1989.
[21]T.R. Loveless, RE Williams, and R.P Kamlakar 1994. 'A study of the effects of abrasive-flow finishing on various machined surfaces', Journal of Materials Processing Technology, 47: 133-51.
[22]M. Wakuda, Y. Yukihiko, and K. Shuzo 2003. 'Material response to particle impact during abrasive jet machining of alumina ceramics', Journal of Materials Processing Technology, 132: 177-83.
[23]S.M. Ravi, V. K. Jain, J. Ramkumar, and Y. M. Joshi. 2011. 'Rheological characterization of styrene-butadiene based medium and its finishing performance using rotational abrasive flow finishing process', International Journal of Machine Tools and Manufacture, 51: 947-57
[24]M. J. Haj, R., H. Nouraei, M. Emamifar, M. Papini, and J. K. Spelt. 2015. 'Erosion modeling in abrasive slurry jet micro-machining of brittle materials', Journal of Manufacturing Processes, 17: 127-40.
[25]V.K. Ojala, Niko, A. Antikainen, A. Kemppainen, J. Minkkinen, O. Oja, and Veli-Tapani Kuokkala. 2016. 'Wear performance of quenched wear resistant steels in abrasive slurry erosion', Wear, 354–355: 21-31.
[26]J. Z. Chen , and S. K. Wu. 1999. 'Chemical machined thin foils of TiNi shape memory alloy', Materials Chemistry and Physics, 58: 162-65.
[27]P. Atanda, A. Fatudimu, and O. Oluwole. 2010. 'Sensitisation study of normalized 316L stainless steel', Journal of Minerals and Materials Characterization and Engineering, 9: 13.
[28]A.G. Demir, B. Previtali, D. Colombo, G. Qiang, V. Maurizio, P. Lorenza, Wei Wu, and Carlo Alberto Biffi. 2012. "Fiber laser micromachining of magnesium alloy tubes for biocompatible and biodegradable cardiovascular stents." In SPIE LASE, 823730-30-9. International Society for Optics and Photonics.
[29]B. Katona, E. Bognár, B. Berta, P. Nagy, and K. Hirschberg. 2013. 'Chemical etching of nitinol stents', Acta of Bioengineering and Biomechanics, 15: 3--8.
[30]賴建璋,「不鏽鋼表面電解拋光技術研究」,碩士論文,元智大學機械工程研究所,2002。
[31]陳裕豐,「高潔淨閥件之流道表面處理-電解拋光(EP)技術」,機械工業雜誌,198期,頁230-240,9月,1999。
[32]謝格列夫,「金屬的電拋光和化學拋光」,北京:科學出版社,1961。
[33]C. L. Faust, 1982. 'Electropolishing. The Practical Side. Pt. 2', Metal Finishing, 80: 21-25.
[34]C. L.Faust, 1982. 'Electropolishing. The Practical Side. Pt. 2', Metal Finishing, 80: 59-63.
[35]S. Murali, M. Ramachandra, K. Murthy, and K. Raman. 1996. 'Development of electropolishing tecniques on metals and alloys', Praktische Metallographie, 33: 359-68.
[36]H. Hocheng, PS Kao, and YF Chen. 2001. 'Electropolishing of 316L stainless steel for anticorrosion passivation', Journal of materials engineering and performance, 10: 414-18.
[37]H. Zhao, Jan Van Humbeeck, and I De Scheerder. 2001. 'Surface conditioning of NiTi and Ta stents', Biomedical Research: 439-48.
[38]H. Zhao, J.V. Humbeeck, J. Sohier, and I.D. Scheerder. 2003. 'Electrochemical polishing of 316L stainless steel slotted tube coronary stents: an investigation of material removal and surface roughness', Biomedical Research, 8: 70-81.
[39]黄远, 田筝, 刘文西, and 张君奎. 2003. '加工工艺对医用心血管支架生物相容性的影响', 天津大学学报: 自然科学与工程技术版, 36: 374-79.
[40]S. Habibzadeh , L. Ling, Dominique Shum-Tim, C D. Elaine, and O. Sasha 2014. 'Electrochemical polishing as a 316l stainless steel surface treatment method: towards the improvement of biocompatibility', Corrosion Science, 87: 89-100.
[41]陳正宗,「膽管支架支設計與光纖雷射加工」,碩士論文,國立臺灣科技大學,2013。
[42]P. J. Thompson, 2000. "Stent with dual support structure."
[43]J. Williams, 2005. Engineering tribology (Cambridge University Press).
[44]W.S. Gwidon, A.W. Batchelor.2005.Engineering Tribology,New York, USA: Elsevier Butterworth-Heinemann Publishers
[45]H. Zhao, V.H. Jan, J. Sohier, and I.D. Scheerder. 2003. 'Electrochemical polishing of 316L stainless steel slotted tube coronary stents: an investigation of material removal and surface roughness', Biomedical Research, 8: 70-81.
[46]H. Zhao, V.H. Jan, S. Jürgen, and D.S. Ivan 2002. 'Electrochemical polishing of 316L stainless steel slotted tube coronary stents', Journal of Materials Science: Materials in Medicine, 13: 911-16.
[47]P. J. Thompson, 2000. "Stent with dual support structure."
[48]S. Magaino, M. Matlosz, and D. Landolt. 1993. 'An impedance study of stainless steel electropolishing', Journal of the electrochemical society, 140: 1365-73.
[49]M. Pohl, C. Heßing, and J. Frenzel. 2004. 'Electrolytic processing of NiTi shape memory alloys', Materials Science and Engineering: A, 378: 191-99.
[50]R. Vidal, and C.W. Alan 1995. 'Copper Electropolishing in Concentrated Phosphoric Acid I. Experimental Findings', Journal of the electrochemical society, 142: 2682-89.
[51]S. Magaino , M. Matlosz, and D. Landolt. 1993. 'An impedance study of stainless steel electropolishing', Journal of the electrochemical society, 140: 1365-73.
[52]F.Y. Chang, and C. THC 1998. 'Non-magnetic fluid grinding', Wear, 223: 7-12.
[53]鄧秉敦,「以環形熱轉印技術開發可降解聚乳酸薄膜支架」,博士論文,國立台灣科技大學,2014
[54]鄭博謙,「膽管支架擴張製程與可取回設計」,碩士論文,國立臺灣科技大學,2015。
[55]劉宏德,「不銹鋼電化學拋光之參數設計與最佳化」,碩士論文,國立高雄第一科技大學,2001。

無法下載圖示 全文公開日期 2021/08/08 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE