簡易檢索 / 詳目顯示

研究生: 洪志忠
Nikita - Anggono
論文名稱: 鞋廠線的長度和批次大小的模擬建模與分析
Simulation Modeling and Analysis of Line Length and Batch Size in Footwear Factory
指導教授: 林希偉
Shi-Woei Lin
陳建良
James C. Chen
口試委員: 陳子立
Tzu-Li Chen
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 75
中文關鍵詞: 模擬設施設計生產線長度生產批量大小鞋類
外文關鍵詞: simulation, facility design, production line length, production batch size, footwear
相關次數: 點閱:411下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在鞋類製造方面,工廠往往使用一定的長度之產線以維持他們的生產線。各種因素被放入一個工廠的設計,但線路長度因為訂單大小,可用空間和機器要求與其緊密相關而被認為習慣的設置。然而,即使當他們可以選擇不同的生產長度(例如,當它們被規劃比一般要小,或者相反的順序設施),使用不同的線之長度卻不被看作是一個必要或可行的選擇。
    本研究旨在尋找到生產線長度對生產設施的整體性能的影響。再者,對不同長度的鞋類生產設施之整體性能的影響進行調查。這些因素包括生產區之間的傳輸批次的大小、不同的鞋款樣式、不同程度的變化之處理時間。然而,實驗與真正的工廠是不盡相同,主要是由於成本因素在不同長度的差異,與存在相互競爭的公司之間。從這些公司收集的數據也不是一個可行的選擇,因為每個工廠生產不同類型或不同款式的鞋子。為求公平並比較平等的鞋款式,本研究基於真實設施上的多種類生產功能而建立仿真模型,並亞洲鞋廠生產專家合作及完成了該模型的開發和驗證。據了解,從仿真結果,生產線的長度於不同的方式、不同的製造條件下有一定的影響。這些影響於不同地區之間的生產設施也各不相同。


    In footwear manufacturing, factories tend to maintain their production lines at a certain length. Various considerations are put into the design of a factory, but line length is perceived more as a customary setting since it is tightly related to order size, space availability, and machine requirement. However, even when they can opt for different production length (e.g. when they are planning for a facility whose order are smaller than the usual, or vice versa), using different line length is not seen as a necessary or even a viable option.
    This study aims to look into the effects of production line length on the overall performance of a production facility. In addition, aspects which may influence the overall performance of footwear production facility at different lengths will also be investigated. These factors include the size of transfer batch among production areas, different shoes styles, and different levels of variation in the processing time. Experimenting with real factories is not possible, mainly due to cost and the fact that different lengths are found in different, competing companies. Gathering data from these companies is also not a viable option since each factory produces different types or styles of shoes. To accommodate fair comparison using equal shoe styles, a simulation model was built based on a length-switch-enabled projection of real facility. The development and validation of the model was done in cooperation with production experts from Asian-based footwear factories. It was learned from the result of the simulation that line length has an impact on production. Through this result, different manners of impact were discovered in a diverse manufacturing condition. These impacts also vary among different areas in the production facility.

    Abstracti Acknowledgmentii Contentsiii List of Figuresvi List of Tablesix 1.Chapter 1: Introduction1 1.1.Background1 1.2.Objectives3 1.3.Organization of thesis3 2.Chapter 2: Literature Review4 2.1.Fundamental Insights on Simulation4 2.2.Studies on Simulation and Facility Design4 2.3.Existing Works in Footwear Manufacturing Industry5 3.Chapter 3: Methodology7 4.Chapter 4: Problem Description9 4.1.The Line Length Distinction9 4.2.Overview of Shoe Manufacturing Process10 4.2.1.Upper-part Manufacturing Process11 4.2.2.Assembly12 4.3.Production Design12 4.3.1.Facility Layout13 4.3.2.Shoe Styles14 5.Chapter 5: Simulation Study17 5.1.Assumptions17 5.1.1.Level of Detail17 5.1.2.Workstations18 5.2.Modeling Processes18 5.2.1.Arrival18 5.2.2.Main Areas20 5.2.3.Completion22 5.3.Model Specifications22 5.3.1.Internal Specification22 5.3.2.Table-based Specification23 5.3.3.Global Specification26 5.4.Running Specification27 5.5.Performance Indicators28 5.6.Verification and Validation29 6.Chapter 6: Output Analysis33 6.1.Design of Experiment33 6.2.Results and Discussion35 6.2.1.Measuring Degree of Impact35 6.2.2.Effects on UPMH36 6.2.3.Effects on Idle Time38 6.2.4.The Interaction Plots42 6.2.5.Bottleneck Analysis and Capacity Projection47 7.Chapter 7: Conclusion and Future Research49 7.1.Conclusion49 7.2.Future Research50 8.References52 9.Appendix54 Appendix A.Object Flow Diagrams54 Appendix B.Result Summary Table57 Appendix C.ANOVA Test Result for Effect Significance65 Appendix D.Complete Interaction Plots for Area-based Exploration69 Appendix E.Complete Interaction Plots for Variation, Line Length, and Batch Size Interaction72

    Angerer, C., Knerr, B., Holzer, M., Adalan, A., & Rupp, M. (2007). Flexible simulation and prototyping for RFID designs. First International EURASIP Workshop on RFID, (pp. 51-54).
    Antony, J. (2003). Design of Experiments for Engineers and Scientists. Elsevier, Ltd.
    Beaverstock, M., Greenwood, A., Lavery, E., & Nordgren, W. (2012). Applied Simulation Modeling and Analysis using Flexsim. Orem: Flexsim Software Products, Inc.
    Chen, J. C., Huang, P. B., Peng, H.-Y., Hung, M.-C., Chen, C.-C., Peng, T.-W., . . . Feng, C.-H. (2011). P‐77: CONWIP for Order Release and WIP Control in Color Filter Fabs. SID Symposium Digest of Technical Papers (pp. 1388-1391). Blackwell Publishing Ltd.
    Chen, J. C., Lee, S.-H., Chen, C.-Y., Chen, C.-C., & Peng, T.-W. (2012). Simulation-based look-ahead release planning for color-filter fabs. SID Symposium Digest of Technical Papers (pp. 1264-1267). John Wiley & Sons, Inc.
    Chen, J. C., Su, L.-H., Chao, G. C., Chen, C.-C., & Peng, T.-W. (2012). Capacity improvement for color-filter fabs through computer modeling and iterative simulation. Journal of the Society for Information Display, 480-487.
    Crist, K., & Uzsoy, R. (2010). Prioritising production and engineering lots in wafer fabrication facilityies: a simulation study. International Journal of Production Research, 3105-3125.
    Eryilmaz, M. S., Kuşakci, A. O., Gavranovic, H., & Findik, F. (2012). Analysis of Shoe Manufaturing Factory by Simulation of Production Processes. Southeast Europe Journal of Soft Computing, 120-127.
    Golding, F. Y. (1902). The manufacture of boots and shoes: being a modern treatise of all the processes of making and manufacturing footgear. London: Chapman & Hall.
    Goldsman, L., & Nelson, B. L. (1990). Batch-Size Effects on Simulation Optimization Using Multiple Comparisons with The Best. Winter Simulation Conference, (pp. 288-293).
    Greasley, A. (2008). Using simulation for facility design: A case study. Simulation Modelling Practice and Theory, 670-677.
    Hasgul, S., & Buyuksunetci, A. S. (2005). Simulation modeling and analysis of a new mixed model production lines. Winter Simulation Conference, (pp. 1408-1412).
    Kim, B.-I., Jeong, S., Shin, J., Koo, J., Chae, J., & Lee, S. (2009). A Layout- and Data-Driven Generic Simulation Model for Semiconductor Fabs. IEEE Transactions on Semiconductor Manufacturing (pp. 225-231). IEEE.
    Kleijnen, J., & van Groenendaal, W. (1992). Simulation: A Statistical Perspective. Chichester: John Wiley & Sons Ltd.
    Knepell, P. L., & Arangno, D. C. (1993). Simulation Validation: A Confidence Assessment Methodology. Los Alamitos: IEEE Computer Society Press.
    Koo, P.-H., Bulfin, R., & Koh, S.-G. (2007). Determination of Batch Size at A Bottleneck Machine in Manufacturing Systems. International Journal of Production Research, 1215-1231.
    Law, A. M. (2003). How to Conduct A Successful Simulation Study. Winter Simulation Conference, (pp. 66-70).
    Law, A. M. (2007). Simulation Modeling and Analysis. New York: McGraw-Hill.
    Law, A. M. (2009). How to Build Valid and Credible Models. Winter Simulation Conference (pp. 24-33). IEEE.
    Miller, S., & Pegden, D. (2000). Introduction to Manufacturing Simulation. Winter Simulation Conference, (pp. 63-66).
    Nazarian, E., Ko, J., & Wang, H. (2010). Design of multi-product manufacturing lines with the consideration of product change dependent inter-task times, reduced changeover and machine flexibility. Journal of Manufacturing Systems, 35-46.
    Nisanci, H. I., & Sury, R. J. (1980). Production Analysis by Simulation in A Shoe Manufacturing Factory. International Journal of Production Research, 18, 31-41.
    Padhi, S. S., Wagner, S. M., Niranjan, T. T., & Aggarwal, V. (2013). A Simulation-based Methodology to Analyse Production Line Disruptions. International Journal of Production Research, 1885-1897.
    Pillai, D. D., Bass, E. L., Dempsey, J. C., & Yellig, E. J. (2004). 300-mm full-factory simulations for 90-and 65-nm IC manufacturing. IEEE Transactions on Semiconductor Manufacturing, (pp. 292-298).
    Portuguese Footwear, Components and Leather Goods Manufacturers' Association (APICCAPS). (2011). World Footwear Yearbook. APICCAPS.
    Schmeiser, B. (1982). Batch Size Effexts in the Analysis of Simulation Output. Operations Research, 556-568.
    United Nations Population Fund. (2011). State of the World Population 2011. UNFPA.

    QR CODE