研究生: |
蔡宇婷 Yu-Ting Tsai |
---|---|
論文名稱: |
以蘆薈改良之孔洞性PCL作為組織工程支架修復能力之研究 The study of Aloe-Modified and Porous PCL Application for Reconstruction in Tissue Engineering |
指導教授: |
洪伯達
Po-Da Hong 于大雄 Dah-Shyong Yu |
口試委員: |
白孟宜
Meng-Yi Bai 高震宇 Chen-Yu Kao |
學位類別: |
碩士 Master |
系所名稱: |
應用科技學院 - 醫學工程研究所 Graduate Institute of Biomedical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 組織工程 、尿道 、聚己內酯(PCL) 、蘆薈 、發炎 |
外文關鍵詞: | tissue engineering, urethra, polycaprolactone(PCL), aloe, inflammation |
相關次數: | 點閱:657 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臨床醫學界常見的尿道外傷後或感染後引起的的狹窄一直是難以處理的臨床問題。新技術以自體黏膜組織重建切開後的尿道仍存在許多問題,如增加口腔手術、形成二次傷害、新陳代謝、表皮瘻管等,因此可考慮使用生醫材料進行替代。
本實驗選用之聚己內酯( Polycaprolactone, PCL)具有良好生物相容性以及柔軟度,能夠依需求進行修飾改良;蘆薈常見被使用於有機食品、醫學美容、以及敷料加工等等。天然蘆薈萃取物之調節免疫機制長期以來備受研究。另外,蘆薈萃取物能夠促進細胞貼附生長,抗發炎,增進傷口癒合,若是結合組織工程支架,期望可以緩解結痂發炎情形, 避免過度疤痕產生,也能夠減低病患痛苦。因此,本研究期望能夠利用表面修飾之多孔性PCL材料交聯蘆薈萃取物做為尿道組織工程支架,減緩術後發炎結疤情形,並促進組織新生。
本實驗分別針對材料,細胞結合材料以及動物模式探討。在利用交聯劑將蘆薈交聯於多孔性PCL支架表面後,除了觀察材料表面結構以及物理化學性測試,另針對蘆薈抗菌能力以及對細胞的生物相容性作討論。在動物模式中,首先觀察蘆薈汁液消炎能力,手術部分則切開大鼠尿道並縫補材料於缺口,經4、8週後犧牲動物進行組織切片,並利用IHC、Masson等特殊染色法定量發炎程度。
結果發現,多孔性PCL支架在交聯蘆薈萃取物後不會明顯改變整體物化性質,1%之蘆薈萃取物可有效抑制大腸桿菌生長;在細胞實驗上,1%蘆薈萃取物能促進細胞爬行生長;動物模式方面,雖然手術方式限制的關係使得傷口呈現開放式瘻管,但HE組織切片發現兩組之間皆無明顯發炎細胞聚集,特殊染色結果也證明蘆薈多醣能夠控制纖維母細胞增生,減少疤痕形成。
由以上實驗可知表面修飾後之多孔性PCL交聯蘆薈的確可促進細胞生長及組織成型,降低IL-6分泌及減少疤痕產生,顯示此新型組合之生醫材料可考慮做為修補中型傷口組織工程材料。
The Urethral Strictures generally caused by injury-related traumas or viral or bacterial infections have been problems in the clinical medicine. Ther e are many problems of new techniques using autotransplantation with mucosa for reconstruction, such as increasing oral surgeries, secondary damage, metabolism, or fistula, so they may be substitute with biomaterials.
Polycaprolactone(PCL) is known biocompatible, softness, and can be modified if requirements in this study; aloe is often applied to organic foods, medical beauties, and wound dressings. The immunomodulation mechanism of nature aloe extract has been studied for a long time. On the other side, aloe extract can improve cell adhesion, anti-inflammation, and increase wound healing; if combined with bio-scaffolds, it may relieve scars growing and reduce pain that patients suffer from. Therefore, this study expected that using the porous surface modified PCL scaffolds cross linked with aloe extract in urethra tissue engineering to reduce inflammation, scar producing followed by surgeries, and to improve tissue regeneration.
This experiment discussed with materials, cells seeded on materials, and animal models. Instead of surface structures, we conferred porous PCL scaffolds cross linked with aloe extract with physical and chemical properties, anti-bacterial, and cell biocompatible. In animal models, initially we observe anti-inflammatory of aloe; in surgery parts, we had incision on urethras of SD rats and sutured wound with our materials, followed by 4 and 8 weeks animals sacrificed, tissue sections, and using IHC, Masson special staining to quantify degree of tissue inflammation.
Results showed that the physical and chemical properties of porous PCL scaffolds would not be changed after aloe cross linking; 1 % aloe extract could inhibit E. co li growing efficiently; for cell part, 1 % aloe extract could improve cell migration and proliferation. Though inhibition of surgery method resulted in open wide fistula, however, it was not obviously found inflammatory cells gathering around the tissue between the HE sections of the two material groups, and the special staining also proof that the aloe extract could control fibroblasts proliferation and reduce scars producing.
The conclusions were that the aloe cross-linking on surface modified porous PCL indeed improve cell proliferation and tissue reconstruction, reduce IL-6 releasing and scars producing, showed that this new combination of biomaterial can be considered to be a medium size wound healing materials in tissue engineering.
[1] 金岩主編,組織工程學,第四軍醫大學出版社,西安,第3, 6頁(2004)
[2] Eberli D., Filho L. F., Atala A., Yoo J. J., “Composite scaffolds for the engineering of hollow organs and tissues.,” Methods, Vol. 47 : 109–115(2009).
[3] Yannas I. V., Burke J. F., “Design of an artificial skin I. Basic design principles.,” Journal of Biomedical Materials Research, Vol. 14 (4): 65~81(1980).
[4] Yannas I. V., Burke J. F., Gordon P. L., Huang C., Rubenstein R. H., “Design of an artificial skin II. Control of chemical composition. ,“Journal of Biomedical Materials Research, Vol. 14 (4): 107~113(1980).
[5] Dagalakis N.,Flink J., Stasikelis P., Burke J. F., Yannas I. V., “Design of an artificial skin III. Control of pore structure.,” Journal of Biomedical Materials Research, Vol. 14 (4): 511~528(1980).
[6] Wang Y. Z., King H. J., Novakovic G. V., Kaplan D. L., “Stem cell-based tissue engineering with silk biomaterials.,” Biomaterials, Vol. 27( 36): pp. 6064-6082(2006)
[7] 李玉寶主編,生物醫學材料,化學工業出版社,北京,第128, 135, 137頁(2003)
[8] Gorodetsky R., “The use of fibrin based matrices and fibrin microbeads (FMB) for cell based tissue regeneration.,” Informa Healthcare, Vol. 8, No. 12 , pp. 1831-1846(2008)
[9] Drotleff S., Lungwitz U, Breuig M., Dennis A., et al. Biomimetic polymers in pharmaceutical and biomedical science. European Journal of Pharmaceutics and Biopharmaceutics, Vol. 58: 385-407(2004).
[10] Theoret C., “Tissue Engineering in Wound Repair: The three “R”s—Repair, Replace, Regenerate.,” Veterinary Surgery, Vol. 38:905–913(2009).
[11] Tabata Y., “Recent progress in tissue engineering.,“ Drug Discovery Today, Vol. 6(1): 483-487(2001).
[12] Park J. B., “In The Biomedical Engineering Handbook.,“ Florida: CRC Press, Inc., (1995)
[13] Griffith L. G., “Polymeric biomaterials”, Acta Materials, Vol. 48: 263-277(2000).
[14] Seal B. L., Otero T. C., et al. “Polymeric biomaterials for tissue and organ regeneration.”, Materials Science and Engineering R-Reports, Vol. 34: 147-230(2001).
[15] Scott G., “”Green” polymers.”, Polymer Degradation and Stability, Vol. 68(1): 1-7(2000).
[16] Sioshansi P., Tobin E. J., “Surface treatment of biomaterials by ion beam process., ” Surt Coat Technol, Vol. 83: 175-182(1996).
[17] Khang G., Lee S. J., Joen J. H., Lee H. B., “Interaction of fibroblast cell onto physicaochemically treated PLGA surface.,” Polymer-Korea, Vol. 24: 869-876(2000).
[18] Gao J. M., Niklason L., Langer R., “Surface hydrolysis of poly(glycolic acid) meshes increase the seeding density of vascular smooth muscle cells.,” Journal of Biomedical Materials Researches, Vol. 42: 417-424(1998).
[19] Lee K. B., Yoon K. R., Woo S. I., Choi I. S., “Surface modification of poly(glycolic acid) (PGA) for biomedical applications.”, Journal of pharmaceutical sciences, Vol. 92: 933-937(2003).
[20] Wikipedia Free Encyclopedia. http://en.wikipedia.org/wiki/Main_Page
[21] 艾合麥提.玉素甫,王振斌,朱良,可生物降解材料聚己內酯在醫學上的應用進展,國外醫學生物醫學工程分冊,Vol. 28(1): 19-23(2005).
[22] Cha Y., Pitt C. G., “The biodegradability of polyester blends.,“ Biomaterials, Vol. 11(5): 366(1990).
[23] Koleske J.V.,”Blends containing poly(ε-caprolactone) and related polymers. In: D.R. Paul and S. Newman, Editors.”, Polymer Blends, Academic Press, USA, Vol. 2: 369–389(1978).
[24] Nakamura M., Hikida M., Nakano T., “Concentration and molecular weight dependency of rabbit corneal epithelial wound healing on hyaluronan.,” Current Eye Research, Vol. 11(10):981-6(1992).
[25] Jameela, S.R., Suma, N., Misra, A., Raghuvanshi, R., Ganga, S. and Jayakrishnan, A., “Poly ( -Caprolactone) microspheres as a vaccine carrier.,” Current Sciences. Vol. 70, pp. 669–671(1996).
[26] Divya P., Kalliyana K. V., Lissy K. K., “Functional stability of endothelial cells on a novel hybrid scaffold for vascular tissue engineering.” Biofabrication, Vol. 2(4).
[27] Greenwell T. J., Castle C., Andrich D. E., MacDonald J.T., Nicol D.L., Mundy A. R., “Repeat urethrotomy and dilation for the treatment of urethral stricture are neither clinically effective nor cost-effective.,” Journal Urology, Vol. 172(1):275-7(2004).
[28] Patterson J. M., Chapple C. R., “Surgical techniques in substitution urethroplasty using buccal mucosa for the treatment of anterior urethral strictures.,” Review, European Urology, Vol. 53(6):1162-71(2008).
[29] Chen F., Yoo J. J., Atala A., “Acelullar collagen matrix as a possible “pff the shelf” biomaterial for urethral repair.,” Urology, Vol. 54: 407-10(1999).
[30] Bazeed M. A., Thuroff J. W., Schmidt R. A., Tanagho E. A., “New treatment for urethral strictures.,” Urology, Vol. 21: 53-57(1983).
[31] Olsen L., Bowald S., Busch C., et al., ”Urethral reconstruction with a new synthetic absorbable device.,” Journal of Urology, Nephrol. Vol. 26: 323-6(1992).
[32] Atala A., Vacanti, J. P., Peters C. A., Mandell J., Retik A. B., Freeman M. R., “Formation of urothelial structures in vivo from dissociated cells attached to biodegradable polymer scaffolds in vitro.,” Journal of Urology, Vol. 148: 658(1992).
[33] Sielert K. D., Bakircioglu M. E., Nunes L., Tu R., et al., “Homologous acellular matrix graft for urethral reconstruction in the rabbit: histological and functional evaluation.,” Journal of Urology, Vol. 163: 1958-65(2000).
[34] Akira K., Carl M. S., Neil F. W., Andrew J. L., Bernard F. K., Stanford M. G., “Imaging of Urethral Disease: A Pictorial Review.,” RadioGraphics, Vol. 24: S195–S216(2004).
[35] Beatriz V., Avila G., Segura D., Escalante B., “Antiinflammatory activity of extracts from Aloe vera gel.,” Journal of Ethnopharmacology, Vol. 55(1), pp. 69-75(1996)
[36] Hutter J. A., Salman M., Stavinoha W. B., Satsangi N., Williams R. F., Streeper R. T., Weintraub S. T., “Antiinflammatory C-glucosyl chromone from Aloe barbadensis.,” Journal of Nature Products, Vol. 59(5):541-3(1996).
[37] Rishi P., Rampuria A., Tewari R., Koul A., “Phytomodulatory potentials of Aloe vera against Salmonella OmpR-mediated inflammation.,” Phytother Researches, Vol. 22(8):1075-82(2008).
[38] Sakar D., Dutta A., Das K., Sarkar K., et al.,“Effect of Aloe Vera on Nitric Oxide Production by Macrophages During Inflammation.,” Indian journal of Pharmaceutics, Vol. 37(6): 371-375(2005).
[39] Eamlamnam K., Patumraj S., Visedopas N., Thong-Ngam D., “Effects of Aloe vera and sucralfate on gastric microcirculatory changes, cytokine levels and gastric ulcer healing in rats..” World Journal of Gastroenterol. Vol.12(13):2034-9(2006).
[40] Lin H. J., Lai C. C., Lee C., Fan S.S., Tsai Y., Huang S. Y., Wan L., Tsai F.J., “Aloe-emodin metabolites protected N-methyl-d-aspartate-treated retinal ganglion cells by Cu-Zn superoxide dismutase.”J Ocul Pharmacol Ther, Vol. 23(2):152-71(2007).
[41] Moon E. J., Lee Y. M., Lee O. H., Lee M. J., Lee S. K., Chung M. H., Park Y. I., Sung C. K., Choi J. S., Kim K. W. , “A novel angiogenic factor derived from Aloe vera gel: beta-sitosterol, a plant sterol.,”.Angiogenesis. Vol. 3(2):117-23(1999).
[42] Gallagher J., Gray M.J., “Is aloe vera effective for healing chronic wounds?,” Wound Ostomy Continence Nurs., Vol. 30(2):68-71(2003).
[43] Yagi A., Kabash A., Okamura N., Haraguchi H., Moustafa S.M., Khalifa T.I.., “Antioxidant, free radical scavenging and anti-inflammatory effects of aloesin derivatives in Aloe vera.,” Planta Med., Vol. 68(11):957-60(2002).
[44] Turkay G, Can A, Gurel A, Yildiz F, Yardibi H, Ekiz EE, Uzun H.Eur “Effect of Aloe vera leaf pulp extract on Ehrlich ascites tumours in mice,.” J Cancer, Vol. 16(2):151-7(2007).
[45] Artola RL, Murature M, Murature D, Ditamo Y, Roth GA, Kivatinitz S, “Mannan from Aloe saponaria inhibits tumoral cell activation and proliferation.,”Immunopharmacol, Vol. 4(3):411-8(2004).
[46] Shilpakala SR, Prathiba J, Malathi R.,”S usceptibilities of Escherichia coli and Staphylococcus aureus to Aloe barbadensis., “ Eur Rev Med Pharmacol Sci, Vol. 13(6):461-4(2009).
[47] Habeeb F, Shakir E, Bradbury F, Cameron P, Taravati MR, Drummond AJ, Gray AI, “Screening methods used to determine the anti-microbial properties of Aloe vera inner gel,.”Methods, Vol. 42(4):315-20(2007).
[48] Eberendu A. R., Luta G., Edwards J. A., McAnalley B. H., Davis B., Rodriguez S., Henry C. R. Journal of Association of Official Analytical Chemists Int. “Quantitative colorimetric analysis of aloe polysaccharides as a measure of Aloe vera quality in commercial products.,” Vol. 88(3):684-91(2005).
[49] Yu D. S., Chen H. I., Chang S. Y., Ma C. P., “Salt modified Polycaprolactone collagen scaffold for urothelial cell grotwh”, Formosa journal surgery, Vol. 40: 229~235(2007).
[50] Zhu Y., Gao C. Y., Liu X. Y., Shen J. C., “Surface Modification of Polycaprolactone Membrane via Aminolysis and Biomacromolecule Immobilization for Promoting Cytocompatibility of Human Endothelial Cells.,” Biomacromolecules, Vol. 3, 1312-1319(2002).
[51] Biomolecules, http://classroom.sdmesa.net/eschmid/Lab4-Biol210.htm
[52] 魏農農,陸彬,結腸定位殼聚糖包衣氟尿嘧啶脂質體的製備、形態與體外釋放,Acta Pharmaceutiea Sinica,Vol. 38(1):53—56(2003).
[53] DOJJINDO, DURALiQ MTT Stable Solution #Unit: 1000 tests http://www.dojindo.com/home/index.php?page=shop.product_details&flypage=flypage.tpl&product_id=504&category_id=29&option=com_virtuemart&Itemid=58
[54] Department of Microbiology, Southern Carbodale, http://www.micro.siu.edu/micr201/chapter4N.html
[55] Lawrence B. J., Madihally S. V., “Cell colonization in degradable 3D porous matrices.”, Cell Adhesion & Migration, Vol. 2:1, 9-16(2008).
[56] Yu D. S., Lee C. F., Chen H. I., Chang S. Y., “Bladder wall grafting in rats using salt-modified and collagen-coated polycaprolactone scaffolds: Preliminary report.,” Journal of Urology, Vol.14(10): 939-44(2007).
[57] Jo J. H., Lee E. J., Shin D. S., Kim H. E.,Kim H. W., Koh Y. H., Jang J. H., “In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(epsilon-caprolactone) composite materials. ,“ Journal of biomedical materials research Part B Applied biomaterials, Vol. 91: 1, pp. 213-220(2009).
[58] Hou Q. P., Grijma D. W., Jan F. J., “Preparation of interconnexted highly porous polymeric structures by a replication and freeze-drying process.,” “ Journal of biomedical materials research Part B Applied biomaterials, Vol. 67B, pp. 732-740(2003).
[59] Causa F., Battista E., Moglie R. D., Guarnieri D., Iannone M., Netti P. A., “Surface Investigation on Biomimetic Materials to Control Cell Adhesion: The Case of RGD Conjugation on PCL.,” American Chemical Society , Vol. 26 (12): 9875–9884(2010).
[60] 黃莉涵, 「Type II Collagen/Chondroitin sulfate/PCL複合材於軟骨組織工程之研究與應用」,碩士論文,國立清華大學,新竹(2007) 。
[61] Masuko et al., “Carbohydrate analysis by a phenol-sulfuric acid method in microplate format.,” Analytical Biochemistry, Vol. 339: 69-72(2005).
[62] Lawrence R., Tripathi P., Jeyakumar E., “Isolation, purification and evaluation of antibacterial agents from aloe vera.,” Brazilian Journal of Microbiology,Vol .40: 906-915(2009).
[63] Yagi A., Egusa T., Arase M., Tanabe M., Tsuji H., “Isolation and Characterization of the Glycoprotein Fraction with a Proliferation-Promoting Activity on Human and Hamster Cells in Vitro from Aloe vera Gel.,” Pharmacology and Molecular Biology/Plant med., Vol. 63(1): 18-21(1997).
[64] Yao H., Chen Y., Li S. G., Huang L. Y., Chen W., Lin X. H., “Promotion proliferation effect of a polysaccharide from Aloe barbadensis Miller on human fibroblasts in vitro.,” International Journal of Biological Macromolecules, Vol. 45( 2): 152-156(2009).
[65] Makoto T., Kitamoto D., Asikin Y., Takara K., Wada K., “Liposomes encapsulating aloe vera leaf gel extract significantly enhance proliferation and collagen synthesis in human skin cell lines.,” Journal of Oleo Science, Vol.58(12): 643-650(2009).
[66] Tudose A., Cella C., Cardamon F., Vono M., Molinaro R., Paolino D., “Regenerative properties of aloe vera juice of human keratinocyte cell culture.,” journal of pharmacy, Vol. 57(5): 590-597(2009).
[67] Rusmin S., DeLuca P. P., “Effect of antibiotics and osmotic change on the release of endotoxin by bacteria retained on intravenous inline filters.,” Journal of Pharmacy, Vol.32:378-380(1975).
[68] Kanaan S. A., Garabedian B. S., Jalakhian R. H., Saadé N. E., Haddad J. J., Jabbur S. J., “Thymulin reduces hyperalgesia induced by peripheral endotoxin injection in rats and mice.,” Brain Research, Vol. 717(1-2): 179-183(1996).
[69] 葉靜怡,「探討蘆薈凝膠處理對細菌脂多醣體誘發炎症反應之影響」,碩士論文,交通大學,新竹(2005)。
[70] Powers M. Y., Campbell B. G., Weisse C. “Porcine small intestinal submucosa augmentation urethroplasty and balloon dilatation of a urethral stricture secondary to inadvertent prostatectomy in a dog.,” J Am Anim Hosp Assoc, Vol. 46:358-65(2010).
[71] Sunay M., Dadali M., Emir L., Karabulut A., Erol D., “Effect of thioglycolic acid instillation to stop hair growth on the urethral mucosa after urethroplasty with hairy skin in a rat model.,” Urol Int, Vol. 84:282-5(2010).
[72] Shakeri S., Haghpanah A., Khezri A., et al., “Application of amniotic membrane as xenograft for urethroplasty in rabbit.,” Int Urol Nephrol, Vol. 41:895-901(2009).
[73] Elbakry A. “Healing of unstented tubularized incised plate urethroplasty: an experimental study in a rabbit model.,” BJU Int, Vol. 92:656-7(2003).
[74] Cho J. W., Kang M. C., Lee K. S., “TGF-beta1-treated ADSCs-CM promotes expression of type I collagen and MMP-1, migration of human skin fibroblasts, and wound healing in vitro and in vivo.,” International Journal of Molecular Medicine, Vol.26:901-6(2010).
[75] Wang Y., Tang Z., Xue R., et al. “TGF-beta1 promoted MMP-2 mediated wound healing of anterior cruciate ligament fibroblasts through NF-ĸB. Connect Tissue Res, (2010).
[76] Margadant C., Sonnenberg A. “Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing.,“ EMBO Rep, Vol.11:97-105(2010).
[77] Joo C.K., Seomun Y., “Matrix metalloproteinase (MMP) and TGF beta 1-stimulated cell migration in skin and cornea wound healing.,” Cell Adhesion Migration, Vol.2:252-3(2008).
[78] Wang X. J., Han G., Owens P., Siddiqui Y., Li A. G., “Role of TGF beta-mediated inflammation in cutaneous wound healing.,” Journal of Investig Dermatol Symp Proc., Vol.11:112-7(2006).