簡易檢索 / 詳目顯示

研究生: 劉珈琦
Chia-Chi Liu
論文名稱: 有機金屬骨架修飾Fe2P@CNT於鹼性環境之高氧氣還原活性新穎材料
Novel Fe2P@Carbon Nanotube modified with MOF as a superior material for highly activity of oxygen reduction reaction in alkaline media
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 施劭儒
shao-ju shih
王冠文
Kuan-Wen Wang
梁元彰
Yuan-Chang Liang
張孫堂
Sun-Tang Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 109
中文關鍵詞: 氧氣還原反應燃料電池有機金屬骨架奈米碳管
外文關鍵詞: Oxygen Reduction Reaction(ORR), Fuel Cells, Metal Organic Framework (MOF), Carbon Nanotube(CNT)
相關次數: 點閱:312下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用有機金屬骨架在奈米碳管(CNT)上成長以修飾CNT,之後經過熱處理。在特定的溫度下熱處理時有最佳之氧氣還原活性且其電子轉移數可達3.99,已非常接近理想之電子轉移數。而具有高催化活性的觸媒歸因於兩個因素,首先,此觸媒具有獨特的Fe2P@CNT結構,並且有高比例的Unoccupied Graphitic-N π*之氮官能基,可以做為氧氣還原反應的活性點。另一原因為多孔結構的形成與較高導電度的奈米碳管骨架。此外,中孔結構與高比表面積提高觸媒在電解下的活性點與反應性。另外,觸媒以線性掃描法(LSV)方式進行30000圈穩定性測試,觸媒的半波電位僅衰退為26 mV,可得知其觸媒在反應的過程中穩定性極佳。
    此研究之新型材料,利用簡易的方法製備獨特形貌的高效率電催化劑,在未來應用在許多電化學反應和系統中,實為一具有相當競爭力之選擇。


    We have synthesized ORR electrocatalysts based on MOF modified CNT derived from growth of metal–organic frameworks on carbon nanotubes, followed by pyrolysis. After the pyrolysis in the specific temperature, the catalysts demonstrates an excellent ORR ability with the electron-transfer number of 3.99, which is very close to the ideal four electron-transfer number .
    The high catalytic performance of catalyst is probably attributed to two reasons. One is the co-existence of unique Fe2P@CNT structure and high amount of unoccupied Graphitic-N π*, which are the active sites for ORR. The other reason is attributable to the formation of porous structure and high conductivity skeleton from CNT. Furthermore, Mesoporous structure and high surface area boosts the active sites and reactivity during electrolysis. In addition, the catalyst has an excellent stability after 30,000 cycles of stability test. The decay of half-wave potential is only 2.2 mV.
    Our novel material provides a simple approach for fabricating unique and high efficiency electrocatalysts. It is a very competitive choice to apply in many electrochemical reactions and systems.

    中文摘要 I ABSTRACT II 致謝 III 目錄 V 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 人類對能源的反思與新思維 1 1.2 新綠色能源-燃料電池簡介 2 1.2.1 燃料電池的種類 4 1.2.2 鹼性陰離子交換膜燃料電池(AAEMFC)介紹 6 1.2.3 燃料電池內部構造 7 1.2.4 燃料電池極化現象 9 第二章 電化學原理與文獻探討 12 2.1 電化學原理 12 2.1.1 氧化還原反應 12 2.1.2 氧氣還原途徑 12 2.1.3 氧氣還原反應機制 14 2.1.4 氧氣還原反應之電化學催化 15 2.2 文獻探討 18 2.2.1 奈米碳管應用在陰極端之觸媒 18 2.2.2 氮摻雜於奈米碳管之非貴金屬觸媒 19 2.2.3 過渡金屬含氮奈米碳管之非貴金屬觸媒 22 2.2.4 沸石咪唑酯骨架結構(ZIF-8)之非貴金屬觸媒 25 2.2.5 ZIF-8附載於奈米碳管之非貴金屬觸媒 26 2.2.6 研究動機 29 第三章 實驗步驟與方法 31 3.1 實驗規劃 31 3.2 實驗材料及藥品 32 3.3 實驗流程 33 3.4 實驗儀器與設備 34 3.5 實驗步驟 35 3.5.1 陰極觸媒製備 35 3.5.2 觸媒工作電極製備 36 3.6 儀器分析原理 37 3.6.1 X光繞射分析儀 37 3.6.2 場發射掃描式電子顯微鏡 39 3.6.3 X光吸收光譜 40 3.6.4 比表面積及孔徑分析儀 47 3.6.5 穿透式電子顯微鏡 49 3.6.6 拉曼光譜分析儀 51 3.6.7 感應耦合電漿原子發射光譜儀 52 3.6.8 電化學分析儀 53 第四章 結果與討論 57 3.6 氮摻雜奈米碳管之材料 57 4.1.1 氮摻雜奈米碳管之氧氣還原反應活性 58 4.1.2 氮摻雜奈米碳管之X光繞射分析 59 4.1.3 CNT之碳原子K-吸收邊緣的近X光吸收細微結構 61 4.2 ZIF-8/Fe2P@CNT之觸媒材料 63 4.2.1 ZIF-8/Fe2P@CNT之氧氣還原反應活性比較 64 4.2.2 ZIF-8/Fe2P@CNT之X光繞射分析 68 4.2.3 ZIF-8/Fe2P@CNT之SEM分析 72 4.2.4 ZIF-8/Fe2P@CNT之X光吸收光譜分析 76 4.2.5 ZIF-8/Fe2P@CNT之氮原子K-吸收邊緣的近X光吸收細微結構分析 79 4.2.6 ZIF8/Fe2P@CNT之拉曼光譜分析 83 4.2.7 ZIF8/Fe2P@CNT之穿透式電子顯微鏡分析 84 4.2.8 ZIF-8/Fe2P@CNT之金屬定量分析 86 4.2.9 CNT、ZIF-8、Pt/C、ZIF-8/Fe2P@CNT之氧氣還原反應活性比較 87 4.2.10 CNT、ZIF-8、ZIF-8/Fe2P@CNT之氮原子K-吸收邊緣的近X光吸收細微結構分析 89 4.2.11 CNT、ZIF-8、ZIF-8/Fe2P@CNT之等溫吸附曲線與比表面積探討 91 4.2.12 ZIF-8/Fe2P@CNT觸媒之穩定性測試 93 4.2.13 ZIF-8/Fe2P@CNT觸媒之全電池測試 96 第五章 結論 99 參考文獻 101

    [1] 衣寶廉編著, 黃朝榮、林修正修訂, 燃料電池-原理與應用. 五南圖書出版股份有限公司, (2005).
    [2] http://eip.iner.gov.tw/ (核研能源資訊平台網站).
    [3] L. Carrette, K.A. Friedrich, U. Stimming, Fuel Cells – Fundamentals and Applications. Fuel Cells, 1 (2001) 5-39.
    [4] K. Kinoshita, Electrochemical Oxygen Technology. New York: Jhon Wiley & Sons, (1992) 37.
    [5] L. Geniès, R. Faure, R. Durand, Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochimica Acta, 44 (1998) 1317-1327.
    [6] J.P. Hoare, The Electrochemistry of Oxygen. New York: John Wiley & Sons, (1968) 26-91.
    [7] N.M. Marković, P.N. Ross Jr, Surface science studies of model fuel cell electrocatalysts. Surface Science Reports, 45 (2002) 117-229.
    [8] B.E. Conway, Comprehensive Treatise of Electrochemistry. New York: Kluwer Acadwmic Pub, (1983) 26-91.
    [9] S. Iijima, Helical microtubules of graphitic carbon. Nature, 354 (1991) 56–58.
    [10] P.J. Britto, K.S.V. Santhanam, A. Rubio, J.A. Alonso, P.M. Ajayan, Improved charge transfer at carbon nanotube electrodes. Advanced Materials, 11 (1999) 154–157.
    [11] S. Shanmugan, A. Gedanken, Generation of Hydrophilic, Bamboo-Shaped Multiwalled Carbon Nanotubes by Solid-State Pyrolysis and Its Electrochemical Studies. J Phys Chem B, 110 (2006) 2037–2044.
    [12] M. Zhang, Y. Yan, K. Gong, L. Mao, Z. Guo, Y. Chen, Electrostatic Layer-by-Layer Assembled Carbon Nanotube Multilayer Film and Its Electrocatalytic Activity for O2 Reduction. American Chemical Society, 20 (2004) 8781-8785.
    [13] G. Jürmann, K. Tammeveski, Electroreduction of oxygen on multi-walled carbon nanotubes modified highly oriented pyrolytic graphite electrodes in alkaline solution. Journal of Electroanalytical Chemistry, 597 (2006) 119-126.
    [14] T. Maiyalagan, B. Viswanathan, U.V. Varadaraju, Nitrogen containing carbon nanotubes as supports for Pt – Alternate anodes for fuel cell applications. Electrochemistry Communications, 7 (2005) 905-912.
    [15] C.L. Sun, L.C. Chen, M.C. Su, L.S. Hong, O. Chyan, C.Y. Hsu, K.H. Chen, T.F. Chang, L. Chang, Ultrafine Platinum Nanoparticles Uniformly Dispersed on Arrayed CNx Nanotubes with High Electrochemical Activity. Chem. Mater., 17 (2005) 3749-3753.
    [16] W. Xiong, F. Du, Y. Liu, A.P. Jr, M. Supp, T.S. Ramakrishnan, L. Dai, a.L. Jiang, 3-D Carbon Nanotube Structures Used as High Performance Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society 132 (2010) 15839–15841.
    [17] Y. Tang, B.L. Allen, D.R. Kauffman, A. Star, Electrocatalytic Activity of Nitrogen-Doped Carbon Nanotube Cups. Journal of the American Chemical Society 131 (2009) 13200–13201.
    [18] D. Yu, Q. Zhang, L. Dai, Highly Efficient Metal-Free Growth of Nitrogen-Doped Single-Walled Carbon Nanotubes on Plasma-Etched Substrates for Oxygen Reduction. J. Am. Chem. Soc, 43 (2010) 15127–15129.
    [19] L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Nitrogen- and Boron-Doped Double-Walled Carbon Nanotubes. ACS Nano, 1 (2007) 494–500.
    [20] Y. Cao, H. Yu, J. Tan, F. Peng, H. Wang, J. Li, W. Zheng, N.-B. Wong, Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane. Carbon, 57 (2013) 433-442.
    [21] F. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J.-P. Dodelet, G. Wu, H.T. Chung, C.M. Johnston, P. Zelenay, Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuelcells. Energy Environ. Sci., 4 (2011) 114-130.
    [22] W. Li, D. Yang, H. Chen, Y. Gao, H. Li, Sulfur-doped carbon nanotubes as catalysts for the oxygen reduction reaction in alkaline medium. Electrochimica Acta, 165 (2015) 191-197.
    [23] Q. Shi, F. Peng, S. Liao, H. Wang, H. Yu, Z. Liu, B. Zhang, D. Su, Sulfur and nitrogen co-doped carbon nanotubes for enhancing electrochemical oxygen reduction activity in acidic and alkaline media. Journal of Materials Chemistry A, 1 (2013) 14853-14857.
    [24] M. Terrones, H. Terrones, N. Grobert, W.K. Hsu, Y.Q. Zhu, J.P. Hare, H.W. Kroto, D.R.M. Walton, P. Kohler-Redlich, M. Rühle, J.P. Zhang, A.K. Cheetham, Efficient route to large arrays of CN[sub x] nanofibers by pyrolysis of ferrocene/melamine mixtures. Applied Physics Letters, 75 (1999) 3932.
    [25] S. Trasobares, O. Stéphan, C. Colliex, W.K. Hsu, H.W. Kroto, D.R.M. Walton, Compartmentalized CN[sub x] nanotubes: Chemistry, morphology, and growth. The Journal of Chemical Physics, 116 (2002) 8966.
    [26] C. Domínguez, F.J. Pérez-Alonso, M. Abdel Salam, S.A. Al-Thabaiti, A.Y. Obaid, A.A. Alshehri, J.L. Gómez de la Fuente, J.L.G. Fierro, S. Rojas, On the relationship between N content, textural properties and catalytic performance for the oxygen reduction reaction of N/CNT. Applied Catalysis B: Environmental, 162 (2015) 420-429.
    [27] M. Vikkisk, I. Kruusenberg, U. Joost, E. Shulga, K. Tammeveski, Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes. Electrochimica Acta, 87 (2013) 709-716.
    [28] C. Xiong, Z. Wei, B. Hu, S. Chen, L. Li, L. Guo, W. Ding, X. Liu, W. Ji, X. Wang, Nitrogen-doped carbon nanotubes as catalysts for oxygen reduction reaction. Journal of Power Sources, 215 (2012) 216-220.
    [29] Z. Chen, D. Higgins, H. Tao, R.S. Hsu, Z. Chen, Highly Active Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction in Fuel Cell Applications. The Journal of Physical Chemistry C, 113 (2009) 21008–21013.
    [30] Z. Chen, D. Higgins, Z. Chen, Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells. Carbon, 48 (2010) 3057-3065.
    [31] S. Ratso, I. Kruusenberg, M. Vikkisk, U. Joost, E. Shulga, I. Kink, T. Kallio, K. Tammeveski, Highly active nitrogen-doped few-layer graphene/carbon nanotube composite electrocatalyst for oxygen reduction reaction in alkaline media. Carbon, 73 (2014) 361-370.
    [32] M. Lu, L. Guo, S. Kharkwal, H.n. Wu, H.Y. Ng, S.F.Y. Li, Manganese–polypyrrole–carbon nanotube, a new oxygen reduction catalyst for air-cathode microbial fuel cells. Journal of Power Sources, 221 (2013) 381-386.
    [33] A.L. Mohana Reddy, N. Rajalakshmi, S. Ramaprabhu, Cobalt-polypyrrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuel cells. Carbon, 46 (2008) 2-11.
    [34] T.-H. Hu, Z.-S. Yin, J.-W. Guo, C. Wang, Synthesis of Fe nanoparticles on polyaniline covered carbon nanotubes for oxygen reduction reaction. Journal of Power Sources, 272 (2014) 661-671.
    [35] C. Jin, T.C. Nagaiah, W. Xia, B. Spliethoff, S. Wang, M. Bron, W. Schuhmann, M. Muhler, Metal-free and electrocatalytically active nitrogen-doped carbon nanotubes synthesized by coating with polyaniline. Nanoscale, 2 (2010) 981.
    [36] B. Merzougui, A. Hachimi, A. Akinpelu, S. Bukola, M. Shao, A Pt-free catalyst for oxygen reduction reaction based on Fe–N multiwalled carbon nanotube composites. Electrochimica Acta, 107 (2013) 126-132.
    [37] Y. Nie, X. Xie, S. Chen, W. Ding, X. Qi, Y. Wang, J. Wang, W. Li, Z. Wei, M. Shao, Towards Effective Utilization of Nitrogen-Containing Active Sites: Nitrogen-doped Carbon Layers Wrapped CNTs Electrocatalysts for Superior Oxygen Reduction. Electrochimica Acta, 187 (2016) 153-160.
    [38] Z.-s. Yin, T.-h. Hu, J.-l. Wang, C. Wang, Z.-x. Liu, J.-w. Guo, Preparation of highly active and stable polyaniline-cobalt-carbon nanotube electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell. Electrochimica Acta, 119 (2014) 144-154.
    [39] A. Gölzhäuser, C. Wöll, Interfacial systems chemistry: out of the vacuum—through the liquid—into the cell. Physical Chemistry Chemical Physics, 12 (2010) 4273.
    [40] C.J. Lee, S.C. Lyu, H.-W. Kim, J.H. Lee, K.I. Cho, Synthesis of bamboo-shaped carbon–nitrogen nanotubes using C2H2–NH3–Fe(CO)5 system. Chemical Physics Letters 359 (2002) 115–120.
    [41] E.G. Wang, A New Development in Covalently BondedCarbon Nitride and Related Materials. Advanced Materials, 11 (1999) 1129-1133.
    [42] D. Yu, Q. Zhang, L. Dai, Highly Efficient Metal-Free Growth of Nitrogen-Doped Single-Walled Carbon Nanotubes on Plasma-Etched Substrates for Oxygen Reduction. Journal of the American Chemical Society 132 (2010) 15127–15129.
    [43] D.H. Lee, W.J. Lee, W.J. Lee, S.O. Kim, Y.H. Kim, Theory, synthesis, and oxygen reduction catalysis of Fe-porphyrin-like carbon nanotube. Phys Rev Lett, 106 (2011) 175502.
    [44] T. Ikeda, M. Boero, S.-F. Huang, K. Terakura, M. Oshim, J.-i. Ozaki, Carbon Alloy Catalysts Active Sites for Oxygen Reduction Reaction. The Journal of Physical Chemistry C, 112 (2008) 14706–14709.
    [45] S.-F. Huang, K. Terakura, T. Ozaki, T. Ikeda, M. Boero, M. Oshima, J.-i. Ozaki, S. Miyata, First-principles calculation of the electronic properties of graphene clusters doped with nitrogen and boron: Analysis of catalytic activity for the oxygen reduction reaction. Physical Review B, 80 (2009).
    [46] S.v. Dommele, K.P.d. Jong, J.H. Bitter, Nitrogen-containing carbon nanotubes as solid base catalysts. Chemical Communications, (2006) 4859.
    [47] K. Ghosh, M. Kumar, T. Maruyama, Y. Ando, Tailoring the field emission property of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinic substitution. Carbon, 48 (2010) 191-200.
    [48] H. Niwa, K. Horiba, Y. Harada, M. Oshima, T. Ikeda, K. Terakura, J.-i. Ozaki, S. Miyata, X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells. Journal of Power Sources, 187 (2009) 93-97.
    [49] M. Vikkisk, I. Kruusenberg, S. Ratso, U. Joost, E. Shulga, I. Kink, P. Rauwel, K. Tammeveski, Enhanced electrocatalytic activity of nitrogen-doped multi-walled carbon nanotubes towards the oxygen reduction reaction in alkaline media. RSC Adv., 5 (2015) 59495-59505.
    [50] N.P. Subramanian, X. Li, V. Nallathambi, S.P. Kumaraguru, H. Colon-Mercado, G. Wu, J.-W. Lee, B.N. Popov, Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. Journal of Power Sources, 188 (2009) 38-44.
    [51] Z. Lin, G. Waller, Y. Liu, M. Liu, C.-P. Wong, Facile Synthesis of Nitrogen-Doped Graphene via Pyrolysis of Graphene Oxide and Urea, and its Electrocatalytic Activity toward the Oxygen-Reduction Reaction. Advanced Energy Materials, 2 (2012) 884-888.
    [52] P. Wang, Z. Wang, L. Jia, Z. Xiao, Origin of the catalytic activity of graphite nitride for the electrochemical reduction of oxygen: geometric factors vs. electronic factors. Phys Chem Chem Phys, 11 (2009) 2730-2740.
    [53] A. Zhao, J. Masa, W. Schuhmann, W. Xia, Activation and Stabilization of Nitrogen-Doped Carbon Nanotubes as Electrocatalysts in the Oxygen Reduction Reaction at Strongly Alkaline Conditions. The Journal of Physical Chemistry C, 117 (2013) 24283-24291.
    [54] M. Yang, D. Yang, H. Chen, Y. Gao, H. Li, Nitrogen-doped carbon nanotubes as catalysts for the oxygen reduction reaction in alkaline medium. Journal of Power Sources, 279 (2015) 28-35.
    [55] Y. Yao, H. Xiao, P. Wang, P. Su, Z. Shao, Q. Yang, CNTs@Fe–N–C core–shell nanostructures as active electrocatalyst for oxygen reduction. Journal of Materials Chemistry A, 2 (2014) 11768.
    [56] G. Yang, W. Choi, X. Pu, C. Yu, Scalable synthesis of bi-functional high-performance carbon nanotube sponge catalysts and electrodes with optimum C–N–Fe coordination for oxygen reduction reaction. Energy Environ. Sci., 8 (2015) 1799-1807.
    [57] L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian, Y. Zhou, W. Li, M. Hong, Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale, 6 (2014) 6590.
    [58] W. Xia, J. Zhu, W. Guo, L. An, D. Xia, R. Zou, Well-defined carbon polyhedrons prepared from nano metal–organic frameworks for oxygen reduction. Journal of Materials Chemistry A, 2 (2014) 11606.
    [59] X. Wang, J. Zhou, H. Fu, W. Li, X. Fan, G. Xin, J. Zheng, X. Li, MOF derived catalysts for electrochemical oxygen reduction. Journal of Materials Chemistry A, 2 (2014) 14064.
    [60] T. Palaniselvam, B.P. Biswal, R. Banerjee, S. Kurungot, Zeolitic Imidazolate Framework (ZIF)-Derived, Hollow-Core, Nitrogen-Doped Carbon Nanostructures for Oxygen-Reduction Reactions in PEFCs. Chemistry - A European Journal, 19 (2013) 9335-9342.
    [61] J.-S. Li, S.-L. Li, Y.-J. Tang, K. Li, L. Zhou, N. Kong, Y.-Q. Lan, J.-C. Bao, Z.-H. Dai, Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction. Scientific Reports, 4 (2014).
    [62] P. Su, H. Xiao, J. Zhao, Y. Yao, Z. Shao, C. Li, Q. Yang, Nitrogen-doped carbon nanotubes derived from Zn–Fe-ZIF nanospheres and their application as efficient oxygen reduction electrocatalysts with in situ generated iron species. Chemical Science, 4 (2013) 2941.
    [63] J. Wei, Y. Hu, Y. Liang, B. Kong, J. Zhang, J. Song, Q. Bao, G.P. Simon, S.P. Jiang, H. Wang, Nitrogen-Doped Nanoporous Carbon/Graphene Nano-Sandwiches: Synthesis and Application for Efficient Oxygen Reduction. Advanced Functional Materials, 25 (2015) 5768-5777.
    [64] ( 國家同步輻射中心 ) http://www.nsrrc.gov.tw/chinese/lightsource.aspx.
    [65] J. Boese, A. Osanna, C. Jacobsen*, J. Kirz, Carbon edge XANES spectroscopy of amino acids and peptides. Journal of Electron Spectroscopy and Related Phenomena, 85 (1997) 9-15.
    [66] J. Zhou, JianWang, H. Liu, M.N. Banis, X. Sun, T.-K. Sham, Imaging Nitrogen in Individual Carbon Nanotubes. J. Phys. Chem. Lett., 1 (2010) 1709–1713.
    [67] J. Zhou, J. Wang, H. Fang, T.-K. Sham, Structural variation and water adsorption of a SnO2 coated carbon nanotube: a nanoscale chemical imaging study. Journal of Materials Chemistry, 21 (2011) 5944.
    [68] J. Wang, J. Zhou, Y. Hu, T. Regier, Chemical interaction and imaging of single Co3O4/graphene sheets studied by scanning transmission X-ray microscopy and X-ray absorption spectroscopy. Energy & Environmental Science, 6 (2013) 926.
    [69] C. Liu, S. Lee, D. Su, Z. Zhang, L. Pfefferle, G.L. Haller, Synthesis and Characterization of Nanocomposites with Strong Interfacial Interaction: Sulfated ZrO2Nanoparticles Supported on Multiwalled Carbon Nanotubes. The Journal of Physical Chemistry C, 116 (2012) 21742-21752.
    [70] C. Battocchio, I. Fratoddi, M.V. Russo, V. Carravetta, S. Monti, G. Iucci, F. Borgatti, G. Polzonetti, Binuclear transition metal complexes on gold: Molecular orientation by angular dependent NEXAFS spectroscopy. Surface Science, 601 (2007) 3943-3947.
    [71] S. Ganesan, N. Leonard, S.C. Barton, Impact of transition metal on nitrogen retention and activity of iron-nitrogen-carbon oxygen reduction catalysts. Phys Chem Chem Phys, 16 (2014) 4576-4585.
    [72] A. Joshi, T.C. Nagaiah, Nitrogen-doped carbon nanotubes for sensitive and selective determination of heavy metals. RSC Adv., 5 (2015) 105119-105127.
    [73] R.S. Oosthuizen, V.O. Nyamori, Carbon Nanotubes as Supports for Palladium and Bimetallic Catalysts for Use in Hydrogenation Reactions. Platinum Metals Review, 55 (2011) 154-169.
    [74] B. Wu, Y. Kuang, Y. Zhang, X. Zhang, J. Chen, Carbonization of ionic liquid polymer-functionalized carbon nanotubes for high dispersion of PtRu nanoparticles and their electrocatalytic oxidation of methanol. Journal of Materials Chemistry, 22 (2012) 13085.
    [75] S.-T. Chang, H.-C. Huang, H.-C. Wang, H.-C. Hsu, J.-F. Lee, C.-H. Wang, Effects of structures of pyrolyzed corrin, corrole and porphyrin on oxygen reduction reaction. International Journal of Hydrogen Energy, 39 (2014) 934-941.
    [76] T. Yoshida, S. Niimi, M. Yamamoto, T. Nomoto, S. Yagi, Effective nitrogen doping into TiO2 (N-TiO2) for visible light response photocatalysis. Journal of Colloid and Interface Science, 447 (2015) 278-281.
    [77] S. Gadipelli, T. Zhao, S.A. Shevlin, Z. Guo, Switching effective oxygen reduction and evolution performance by controlled graphitization of a cobalt–nitrogen–carbon framework system. Energy Environ. Sci., 9 (2016) 1661-1667.
    [78] L. Ge, Y. Yang, L. Wang, W. Zhou, R. De Marco, Z. Chen, J. Zou, Z. Zhu, High activity electrocatalysts from metal–organic framework-carbon nanotube templates for the oxygen reduction reaction. Carbon, 82 (2015) 417-424.
    [79] Z. Liu, H. Nie, Z. Yang, J. Zhang, Z. Jin, Y. Lu, Z. Xiao, S. Huang, Sulfur-nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions. Nanoscale, 5 (2013) 3283-3288.
    [80] D.-W. Wang, F. Li, M. Liu, G.Q. Lu, H.-M. Cheng, 3D Aperiodic Hierarchical Porous Graphitic Carbon Material for High-Rate Electrochemical Capacitive Energy Storage. Angewandte Chemie International Edition, 47 (2008) 373-376.
    [81] J. Qi, N. Benipal, D.J. Chadderdon, J. Huo, Y. Jiang, Y. Qiu, X. Han, Y.H. Hu, B.H. Shanks, W. Li, Carbon nanotubes as catalysts for direct carbohydrazide fuel cells. Carbon, 89 (2015) 142-147.
    [82] J. Sanetuntikul, C. Chuaicham, Y.-W. Choi, S. Shanmugam, Investigation of hollow nitrogen-doped carbon spheres as non-precious Fe–N4based oxygen reduction catalysts. J. Mater. Chem. A, 3 (2015) 15473-15481.
    [83] D. Yang, H. Yu, G. Li, Y. Zhao, Y. Liu, C. Zhang, W. Song, Z. Shao, Fine microstructure of high performance electrode in alkaline anion exchange membrane fuel cells. Journal of Power Sources, 267 (2014) 39-47.
    [84] L. Zeng, T.S. Zhao, L. An, A high-performance supportless silver nanowire catalyst for anion exchange membrane fuel cells. J. Mater. Chem. A, 3 (2015) 1410-1416.
    [85] C. Venkateswara Rao, Y. Ishikawa, Activity, Selectivity, and Anion-Exchange Membrane Fuel Cell Performance of Virtually Metal-Free Nitrogen-Doped Carbon Nanotube Electrodes for Oxygen Reduction Reaction. The Journal of Physical Chemistry C, 116 (2012) 4340-4346.
    [86] S.M. Unni, S. Ramadas, R. Illathvalappil, S.N. Bhange, S. Kurungot, Surface-modified single wall carbon nanohorn as an effective electrocatalyst for platinum-free fuel cell cathodes. J. Mater. Chem. A, 3 (2015) 4361-4367.
    [87] T. Palaniselvam, V. Kashyap, S.N. Bhange, J.-B. Baek, S. Kurungot, Nanoporous Graphene Enriched with Fe/Co-N Active Sites as a Promising Oxygen Reduction Electrocatalyst for Anion Exchange Membrane Fuel Cells. Advanced Functional Materials, 26 (2016) 2150-2162.
    [88] V.M. Dhavale, S.K. Singh, A. Nadeema, S.S. Gaikwad, S. Kurungot, Nanocrystalline Fe-Fe2O3 particle-deposited N-doped graphene as an activity-modulated Pt-free electrocatalyst for oxygen reduction reaction. Nanoscale, 7 (2015) 20117-20125.
    [89] T. Palaniselvam, M.O. Valappil, R. Illathvalappil, S. Kurungot, Nanoporous graphene by quantum dots removal from graphene and its conversion to a potential oxygen reduction electrocatalyst via nitrogen doping. Energy & Environmental Science, 7 (2014) 1059.
    [90] S.M. Unni, S.N. Bhange, R. Illathvalappil, N. Mutneja, K.R. Patil, S. Kurungot, Nitrogen-induced surface area and conductivity modulation of carbon nanohorn and its function as an efficient metal-free oxygen reduction electrocatalyst for anion-exchange membrane fuel cells. Small, 11 (2015) 352-360.
    [91] J.W.D. Ng, Y. Gorlin, D. Nordlund, T.F. Jaramillo, Nanostructured Manganese Oxide Supported onto Particulate Glassy Carbon as an Active and Stable Oxygen Reduction Catalyst in Alkaline-Based Fuel Cells. Journal of the Electrochemical Society, 161 (2014) D3105-D3112.
    [92] C.-H. Wang, C.-W. Yang, Y.-C. Lin, S.-T. Chang, S.L.Y. Chang, Cobalt–iron(II,III) oxide hybrid catalysis with enhanced catalytic activities for oxygen reduction in anion exchange membrane fuel cell. Journal of Power Sources, 277 (2015) 147-154.

    無法下載圖示 全文公開日期 2021/07/29 (校內網路)
    全文公開日期 2026/07/29 (校外網路)
    全文公開日期 2026/07/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE