簡易檢索 / 詳目顯示

研究生: Ahmed Abide Tadesse
Ahmed Abide Tadesse
論文名稱: 人機協作團隊之多模態賦能–基於隱藏半馬可夫模型與增強實境之協同裝配系統
Multimodal empowerment for human-robot collaboration team – a hidden semi-Markov model and augmented reality-based collaborative assembly system
指導教授: 王孔政
Kung-Jeng Wang
林久翔
Chiuhsiang Joe Lin
口試委員: 王孔政
Kung-Jeng Wang
林久翔
Chiuhsiang Joe Lin
李永輝
Yung-Hui Lee
蔣明晃
Ming-Huang Chiang
羅明琇
Sonia Ming-Shiow Lo
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 112
中文關鍵詞: 裝配系統裝配系統裝配系統裝配系統裝配系統
外文關鍵詞: Assembly system, Augmented reality, hidden semi-Markov model, high variety and low volume assembly, human robot collaboration
相關次數: 點閱:124下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人機協作 (HRC) 對於實現多品種、小批量 (HVLV) 製造系統至關重要。然而,在 HVLV 系統中,產品裝配發生重大變化期間,及時有效調整操作員工序,極具挑戰。此外,機器人很難識別人類的動態行為並快速適應協作需求。為了解決這些問題,本研究提出了一種多模式多模態賦能機制,旨在提高 HVLV 裝配環境的直觀性和團隊流暢性。首先,我們引入一個隱藏的半馬爾可夫模型(HSMM),它將不同的裝配速度(可見狀態)與不同的操作員風險感知(隱藏狀態)聯繫起來。協作機器人可以使用該模型,根據預測的人類行為來調整其活動。同時,本研究提出了一種基於增強現實 (AR) 的裝配資訊顯示裝置,藉由即時提供檢測對象之裝配資訊,以增強操作員的組裝能力。前述技術的效率和腦力負荷影響,本研究分別使用 HRC 團隊流暢度測量和 NASA 任務負荷指數 (NASATLX) 工具來衡量。一組參與者通過四種裝配場景,進行驗證:手動裝配、基本 HRC、HSMM 輔助 HRC 以及 HSMM 和 AR 輔助 HRC 裝配。研究結果表明,利用 HSMM 和 AR 輔助的 HRC 具有顯著的優勢。本研究顯示,裝配活動的完成速度提高了 13%,人類和機器人的周期時間和空閒時間亦有效降低。此外,NASATLX數據表明操作人員心智負擔減少,組裝活動完成的輕鬆度增加。這些團隊流暢性的提高和精神壓力的減輕,證明了 HSMM 和 AR 輔助的 HRC 應用,極具潛力。


    Human-robot collaboration (HRC) is critical in enabling high-variety, and low-volume (HVLV) manufacturing systems. However, in HVLV settings, efficiently tweaking the operator's function during significant shifts in product assembly generates challenges. At the same time, robots struggle to identify dynamic human behaviours and adapt quickly to collaboration needs. To address these concerns, this research presents a multimodal empowerment tool aimed at improving intuitiveness and team fluency in HVLV assembly scenarios. To begin, we introduce a hidden semi-Markov model (HSMM) that links different assembly speeds (operator visible states) with different operator risk perceptions (hidden states). The robot can adapt its activities based on predicted human behaviours using this model. Simultaneously, the study proposes an augmented reality (AR)-based assembly information display powered by object detection to empower operators. The efficiency and mental workload effects of these technologies are measured using HRC team fluency measures and the NASA Task Load Index (NASATLX) tool, respectively. A set of participants works through four assembly scenarios: manual, basic HRC, HSMM-assisted HRC, and HSMM and AR-assisted HRC assembly. The findings show that utilizing HSMM and AR-assisted HRC has substantial advantages. Assembly activities were completed 13% faster, with reduced cycle times and idle times for both humans and robots. Furthermore, the NASATLX responses suggested a reduction in mental workload and an increase in the ease with which assembly activities were completed. These gains in team fluency and reduced mental stress show the HSMM and AR-assisted HRC applications' significant potential.

    摘要 III Abstract IV Acknowledgment V Contents VI List of Tables XII List of Figures XIII List of symbols and abbreviations XV Chapter 1. Introduction 1 1.1 Research motivations 1 1.2 Research objectives 3 1.3 Research contribution 4 1.4 Research framework 4 1.5 Research limitations 6 1.6 Research outline 6 Chapter 2. Background and related work 7 2.1 Industry 4.0 and Industry 5.0 7 2.2 Human-robot collaboration 8 2.2.1 HRC concept and level of interaction 8 2.2.2 Applications of Collaborative robots (Cobots) 12 2.2.3 HRC module 13 2.3 Multimodal Empowerment in HRC 14 2.3.1 Cobot empowerment through HSMM in HRC applications 15 2.3.2 Operator empowerment through AR 19 2.3.3 AR-based operator empowerment for HRC 21 2.3.4 Object detection with YOLOv5 22 Chapter 3. Robot empowerment through HSMM-assisted HRC 23 3.1 Objective and justification 23 3.2 Manufacturing scenario 24 3.2.1 The manual assembly sequences 24 3.2.2 Task assignment 25 3.2.3 The proposed HRC-based task sequences 26 3.3 HSMM-based Prediction model 27 3.3.1 Notation and Symbols of HSMM 27 3.3.2 A generic illustration of HSMM 27 3.3.3 The Computation Procedure of HSMM 30 3.3.3.1 The HSMM forward-backward solution algorithm 30 3.3.3.2 Decoding procedure 31 3.3.3.3 Re-estimation algorithm 32 3.4 Case study 32 3.4.1 Model structure 32 3.4.2 Parameters and computations 36 3.4.2.1 HSMM Parameters 36 3.4.2.2 Decoding procedure 36 3.4.3 Result and discussion 37 3.4.4 Verification by simulation 40 3.4.4.1 Simulation modeling 40 3.4.4.2 Results of the simulation model 41 3.5 Chapter summary 46 Chapter 4. Multimodal Empowerment of HRC with HSMM and AR 47 4.1 Overall framework 47 4.1.1 High-variety and low-volume (HVLV) assembly systems 47 4.1.2 The objective and rational 48 4.1.3 Integrated Framework for HSMM and AR-assisted HRC 48 4.2 HSMM and AR-assisted HRC-based assembly 51 4.2.1 The YOLOv5-based custom object detection 52 4.2.2 The Unity-based AR model 52 4.2.3 The HSMM-based hand detection and assembly rate classification 53 4.2.4 Cobot control system 54 4.3 HRC scenario implementation approach 56 4.4 Chapter summary 56 Chapter 5. Multimodal Empowerment Case Study 58 5.1 GPU card Assembly procedures 58 5.1.1 Assembly procedures under investigation 58 5.1.2 Experiment scenarios 60 5.1.3 YOLOv5 based custom object detection 62 5.1.4 Team fluency evaluation criteria 63 5.2 Result and Discussion 64 5.2.1 Comparison of HRC fluency measures 64 5.2.2 Cycle time of manual assembly procedures 65 5.2.3 Cycle time of four experiment scenarios 66 5.2.4 Other HRC fluency measures 67 5.2.5 Statistical analysis of HRC fluency measures 68 5.2.6 NASA-TLX-based workload assessment 73 5.3 Chapter summary 78 Chapter 6. Conclusion and future works 79 6.1 Conclusion 79 6.2 Future work 80 References 83 Appendix I: Different HRC modules in the literature 97 Appendix II: HSMM input parameters. 98 Appendix III: Prediction result for Discrete and Gaussian methods. 99 Appendix IV: HRC experiment guidelines and questionnaire 103 Appendix V: Author’s Resume 111 Journal papers 112 Conference papers 112

    Agati, S. S., Bauer, R. D., Hounsell, M. D. S., & Paterno, A. S. (2020, 2020-11-01). Augmented Reality for Manual Assembly in Industry 4.0: Gathering Guidelines. 2020 22nd Symposium on Virtual and Augmented Reality (SVR),
    Aivaliotis, S., Lotsaris, K., Gkournelos, C., Fourtakas, N., Koukas, S., Kousi, N., & Makris, S. (2022). An augmented reality software suite enabling seamless human robot interaction. International Journal of Computer Integrated Manufacturing, 1-27.
    Ajoudani, A., Zanchettin, A. M., Ivaldi, S., Albu-Schäffer, A., Kosuge, K., & Khatib, O. (2018). Progress and prospects of the human–robot collaboration. Autonomous Robots, 42(5), 957-975. https://doi.org/10.1007/s10514-017-9677-2
    Akundi, A., Euresti, D., Luna, S., Ankobiah, W., Lopes, A., & Edinbarough, I. (2022). State of Industry 5.0—Analysis and Identification of Current Research Trends. Applied System Innovation, 5(1), 27. https://doi.org/10.3390/asi5010027
    Ali Ahmad, M., & Alexander, B. (2021). Digital twins for collaborative robots: A case study in human-robot interaction. Robotics and Computer-Integrated Manufacturing, 68, 102092. https://doi.org/https://doi.org/10.1016/j.rcim.2020.102092
    Alves, J., Lima, T. M., & Gaspar, P. D. (2023). Is Industry 5.0 a Human-Centred Approach? A Systematic Review. Processes, 11(1), 193. https://doi.org/10.3390/pr11010193
    Andrea, C., Robin, P., André, C., Antoine, L., & Philippe, F. (2016). Collaborative manufacturing with physical human–robot interaction. Robotics and Computer-Integrated Manufacturing, 40, 1-13. https://doi.org/https://doi.org/10.1016/j.rcim.2015.12.007
    Antonelli, D., & Bruno, G. (2019). Dynamic distribution of assembly tasks in a collaborative workcell of humans and robots. FME Transactions, 47(4), 723-730. https://doi.org/10.5937/fmet1904723a
    Apostolopoulos, G., Andronas, D., Fourtakas, N., & Makris, S. (2022). Operator training framework for hybrid environments: An Augmented Reality module using machine learning object recognition. Procedia CIRP, 106, 102-107. https://doi.org/https://doi.org/10.1016/j.procir.2022.02.162
    Árvai, M. S. a. J. (2020). Risk Perception: Reflections on 40 Years of Research. Risk Analysis, 0.
    Atici-Ulusu, H., Ikiz, Y. D., Taskapilioglu, O., & Gunduz, T. (2021). Effects of augmented reality glasses on the cognitive load of assembly operators in the automotive industry. International Journal of Computer Integrated Manufacturing, 34(5), 487-499. https://doi.org/10.1080/0951192x.2021.1901314
    Awais, M., & Henrich, D. (2010). Human-robot collaboration by intention recognition using probabilistic state machines. 19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010),
    Bänziger, T., Kunz, A., & Wegener, K. (2018). Optimizing human–robot task allocation using a simulation tool based on standardized work descriptions. Journal of Intelligent Manufacturing, 1-14.
    Barbu, V., & Limnios, N. (2006). Maximum likelihood estimation for hidden semi-Markov models. Comptes Rendus Mathematique, 342(3), 201-205.
    Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., & Tanaka, F. (2018). Social robots for education: A review. Science Robotics, 3(21), eaat5954. https://doi.org/10.1126/scirobotics.aat5954
    Bhattacharya, B., & Winer, E. H. (2019). Augmented reality via expert demonstration authoring (AREDA). Computers in Industry, 105, 61-79. https://doi.org/https://doi.org/10.1016/j.compind.2018.04.021
    Bilal, S., Akmeliawati, R., Shafie, A. A., & Salami, M. J. E. (2013). Hidden Markov model for human to computer interaction: a study on human hand gesture recognition. Artificial Intelligence Review, 40(4), 495-516.
    Bütepage, J., & Kragic, D. (2017). Human-robot collaboration: from psychology to social robotics. arXiv preprint arXiv:1705.10146. https://doi.org/https://ui.adsabs.harvard.edu/link_gateway/2017arXiv170510146B/doi:10.48550/arXiv.1705.10146
    Calzavara, M., Faccio, M., & Granata, I. (2023). Multi-objective task allocation for collaborative robot systems with an Industry 5.0 human-centered perspective. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-023-11673-x
    Cartella, F., Lemeire, J., Dimiccoli, L., & Sahli, H. (2015). Hidden Semi-Markov Models for Predictive Maintenance. Mathematical Problems in Engineering, 2015. https://doi.org/Artn 278120
    10.1155/2015/278120
    Castro, P. R., Högberg, D., Ramsen, H., Bjursten, J., & Hanson, L. (2019). Virtual Simulation of Human-Robot Collaboration Workstations. In Advances in Intelligent Systems and Computing (pp. 250-261). Springer International Publishing. https://doi.org/10.1007/978-3-319-96077-7_26
    Chacón, A., Ponsa, P., & Angulo, C. (2021). Cognitive Interaction Analysis in Human–Robot Collaboration Using an Assembly Task. Electronics, 10(11), 1317. https://doi.org/10.3390/electronics10111317
    Chan, W. P., Hanks, G., Sakr, M., Zhang, H., Zuo, T., Loos, H. F. M. V. D., & Croft, E. (2022). Design and Evaluation of an Augmented Reality Head-Mounted Display Interface for Human Robot Teams Collaborating in Physically Shared Manufacturing Tasks. ACM Transactions on Human-Robot Interaction. https://doi.org/10.1145/3524082
    Chan, W. P., Hanks, G., Sakr, M., Zuo, T., Machiel Van Der Loos, H. F., & Croft, E. (2020, 2020-10-24). An Augmented Reality Human-Robot Physical Collaboration Interface Design for Shared, Large-Scale, Labour-Intensive Manufacturing Tasks. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
    Chandan, K., Kudalkar, V., Li, X., & Zhang, S. (2021, 2021-05-30). ARROCH: Augmented Reality for Robots Collaborating with a Human. 2021 IEEE International Conference on Robotics and Automation (ICRA),
    Charoenseang, S., & Tonggoed, T. (2011). Human–Robot Collaboration with Augmented Reality. In Communications in Computer and Information Science (pp. 93-97). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-22095-1_19
    Chen, J., Wu, Q., Wang, G., Miao, P., Li, Y., & Wang, Z. (2021). Application Research of Digital Assembly System of Marine Turbocharger based on VR/AR. Application research of digital assembly system of marine turbocharger based on VR/AR,
    Chen, M., Nikolaidis, S., Soh, H., Hsu, D., & Srinivasa, S. (2020). Trust-Aware Decision Making for Human-Robot Collaboration. ACM Transactions on Human-Robot Interaction, 9(2), 1-23. https://doi.org/10.1145/3359616
    Chen, N., Huang, N., Radwin, R., & Li, J. (2022). Analysis of assembly-time performance (ATP) in manufacturing operations with collaborative robots: a systems approach. International Journal of Production Research, 60(1), 277-296. https://doi.org/10.1080/00207543.2021.2000060
    Chiew, J. H., & Sung, A. N. (2022). Augmented reality application for laptop assembly with assembly complexity study. The International Journal of Advanced Manufacturing Technology, 120(1-2), 1149-1167. https://doi.org/10.1007/s00170-022-08751-x
    Choi, S. H., Park, K.-B., Roh, D. H., Lee, J. Y., Mohammed, M., Ghasemi, Y., & Jeong, H. (2022). An integrated mixed reality system for safety-aware human-robot collaboration using deep learning and digital twin generation. Robotics and Computer-Integrated Manufacturing, 73, 102258. https://doi.org/10.1016/j.rcim.2021.102258
    Chu, C.-H., & Ko, C.-H. (2021). An experimental study on augmented reality assisted manual assembly with occluded components. Journal of Manufacturing Systems, 61, 685-695. https://doi.org/https://doi.org/10.1016/j.jmsy.2021.04.003
    Chu, C.-H., Wang, L., Liu, S., Zhang, Y., & Menozzi, M. (2021). Augmented reality in smart manufacturing: Enabling collaboration between humans and artificial intelligence. Journal of Manufacturing Systems. https://doi.org/10.1016/j.jmsy.2021.05.006
    D’Andrea, R. (2021). Human–Robot Collaboration: The Future of Smart Warehousing. In Disrupting Logistics (pp. 149-162). Springer International Publishing. https://doi.org/10.1007/978-3-030-61093-7_12
    De Pace, F., Manuri, F., Sanna, A., & Fornaro, C. (2020). A systematic review of Augmented Reality interfaces for collaborative industrial robots. Computers & Industrial Engineering, 149, 106806. https://doi.org/https://doi.org/10.1016/j.cie.2020.106806
    de Souza Cardoso, L. F., Mariano, F. C. M. Q., & Zorzal, E. R. (2020). A survey of industrial augmented reality. Computers & Industrial Engineering, 139, 106159. https://doi.org/https://doi.org/10.1016/j.cie.2019.106159
    Demir, K. A., Döven, G., & Sezen, B. (2019, 2019-01-01). Industry 5.0 and Human-Robot Co-working. Procedia Computer Science,
    Dianatfar, M., Latokartano, J., & Lanz, M. (2020). Review on existing VR/AR solutions in human–robot collaboration. Procedia CIRP, 97, 407-411. https://doi.org/10.1016/j.procir.2020.05.259
    Dianatfar, M., Latokartano, J., & Lanz, M. (2021). Review on existing VR/AR solutions in human–robot collaboration. Procedia CIRP, 97, 407-411. https://doi.org/10.1016/j.procir.2020.05.259
    Dimitropoulos, N., Togias, T., Zacharaki, N., Michalos, G., & Makris, S. (2021). Seamless Human–Robot Collaborative Assembly Using Artificial Intelligence and Wearable Devices. Applied Sciences, 11(12), 5699. https://doi.org/10.3390/app11125699
    Dong, S., Wang, P., & Abbas, K. (2021). A survey on deep learning and its applications. Computer Science Review, 40, 100379.
    Doyle-Kent, M., & Kopacek, P. (2020). Industry 5.0: Is the Manufacturing Industry on the Cusp of a New Revolution? In Lecture Notes in Mechanical Engineering (pp. 432-441). Springer International Publishing. https://doi.org/10.1007/978-3-030-31343-2_38
    Drouot, M., Le Bigot, N., Bolloc'h, J., Bricard, E., de Bougrenet, J.-L., & Nourrit, V. (2021). The visual impact of augmented reality during an assembly task. Displays, 66, 101987. https://doi.org/https://doi.org/10.1016/j.displa.2021.101987
    Eswaran, M., Gulivindala, A. K., Inkulu, A. K., & Raju Bahubalendruni, M. V. A. (2023). Augmented reality-based guidance in product assembly and maintenance/repair perspective: A state of the art review on challenges and opportunities. Expert Systems with Applications, 213, 118983. https://doi.org/https://doi.org/10.1016/j.eswa.2022.118983
    Faccio, M., Granata, I., & Minto, R. (2023). Task allocation model for human-robot collaboration with variable cobot speed. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-023-02073-9
    Fang, W., Fan, W., Ji, W., Han, L., Xu, S., Zheng, L., & Wang, L. (2022). Distributed cognition based localization for AR-aided collaborative assembly in industrial environments. Robotics and Computer-Integrated Manufacturing, 75, 102292. https://doi.org/https://doi.org/10.1016/j.rcim.2021.102292
    Fazal, N., Haleem, A., Bahl, S., Javaid, M., & Nandan, D. (2022). Digital Management Systems in Manufacturing Using Industry 5.0 Technologies. In (pp. 221-234). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-8341-1_18
    Feng, S., He, W., Zhang, Q., Billinghurst, M., Yang, L., Zhang, S., & Zhang, X. (2022). ARCoA: Using the AR-Assisted Cooperative Assembly System to Visualize Key Information about the Occluded Partner. International Journal of Human–Computer Interaction, 1-11.
    Galin, R., & Meshcheryakov, R. (2019). Review on Human–Robot Interaction During Collaboration in a Shared Workspace. In Lecture Notes in Computer Science (pp. 63-74). Springer International Publishing. https://doi.org/10.1007/978-3-030-26118-4_7
    García, A., Gracia, L., Solanes, J. E., Girbés-Juan, V., Perez-Vidal, C., & Tornero, J. (2021). Robotic assistance for industrial sanding with a smooth approach to the surface and boundary constraints. Computers & Industrial Engineering, 158, 107366.
    Gerber, A., Derckx, P., Döppner, D. A., & Schoder, D. (2020, 2020-01-01). Conceptualization of the Human-Machine Symbiosis – A Literature Review. Proceedings of the 53rd Hawaii International Conference on System Sciences,
    Gervasi, R., Mastrogiacomo, L., & Franceschini, F. (2023). An experimental focus on learning effect and interaction quality in human–robot collaboration. Production Engineering, 17(3-4), 355-380. https://doi.org/10.1007/s11740-023-01188-5
    Giorgio, B. a., & Patricia, W. (2019). Skill shortages and skill mismatch in Europe A review of the literature (EIB Working Paper, Issue.
    Golovianko, M., Terziyan, V., Branytskyi, V., & Malyk, D. (2023, 2023/01/01/). Industry 4.0 vs. Industry 5.0: Co-existence, Transition, or a Hybrid. Procedia Computer Science,
    Green, S. A., Billinghurst, M., Chen, X., & Chase, J. G. (2008). Human-Robot Collaboration: A Literature Review and Augmented Reality Approach in Design. International Journal of Advanced Robotic Systems, 5(1), 1. https://doi.org/10.5772/5664
    Gualtieri, L., Rauch, E., Vidoni, R., & Matt, D. T. (2019). An evaluation methodology for the conversion of manual assembly systems into human-robot collaborative workcells. Procedia Manufacturing, 38, 358-366. https://doi.org/https://doi.org/10.1016/j.promfg.2020.01.046
    Hald, K., Rehmn, M., & Moeslund, T. B. (2020, 2020-10-24). Human-Robot Trust Assessment Using Motion Tracking & Galvanic Skin Response. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
    Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in psychology (Vol. 52, pp. 139-183). Elsevier.
    Helms, E., Schraft, R. D., & Hagele, M. (2002). Rob@work Robot assistant in industrial environments. Int. Workshop on Robot and Human Interactive Communication.
    Hentout, A., Aouache, M., Maoudj, A., & Akli, I. (2019). Human–robot interaction in industrial collaborative robotics: a literature review of the decade 2008–2017. Advanced Robotics, 33(15-16), 764-799. https://doi.org/10.1080/01691864.2019.1636714
    Hietanen, A., Latokartano, J., Pieters, R., Lanz, M., & Kämäräinen, J.-K. (2019). AR-based interaction for safe human-robot collaborative manufacturing. arXiv preprint arXiv:1909.02933.
    Hoffman, G. (2019). Evaluating Fluency in Human–Robot Collaboration. IEEE Transactions on Human-Machine Systems, 49(3), 209-218. https://doi.org/10.1109/thms.2019.2904558
    Huang, C.-M., & Mutlu, B. (2016). Anticipatory robot control for efficient human-robot collaboration. 2016 11th ACM/IEEE international conference on human-robot interaction (HRI),
    Huang, S., Wang, B., Li, X., Zheng, P., Mourtzis, D., & Wang, L. (2022). Industry 5.0 and Society 5.0—Comparison, complementation and co-evolution. Journal of Manufacturing Systems, 64, 424-428. https://doi.org/https://doi.org/10.1016/j.jmsy.2022.07.010
    Inam, R., Raizer, K., Hata, A., Souza, R., Forsman, E., Cao, E., & Wang, S. (2018, 2018-09-01). Risk Assessment for Human-Robot Collaboration in an automated warehouse scenario. 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA),
    Iyengar, K. P., Zaw Pe, E., Jalli, J., Shashidhara, M. K., Jain, V. K., Vaish, A., & Vaishya, R. (2022). Industry 5.0 technology capabilities in Trauma and Orthopaedics. Journal of Orthopaedics, 32, 125-132. https://doi.org/https://doi.org/10.1016/j.jor.2022.06.001
    Kok, B. C., & Soh, H. (2020). Trust in Robots: Challenges and Opportunities. Current Robotics Reports, 1(4), 297-309. https://doi.org/10.1007/s43154-020-00029-y
    Lai, Z.-H., Tao, W., Leu, M. C., & Yin, Z. (2020). Smart augmented reality instructional system for mechanical assembly towards worker-centered intelligent manufacturing. Journal of Manufacturing Systems, 55, 69-81. https://doi.org/https://doi.org/10.1016/j.jmsy.2020.02.010
    Langer, A., Feingold-Polak, R., Mueller, O., Kellmeyer, P., & Levy-Tzedek, S. (2019). Trust in socially assistive robots: Considerations for use in rehabilitation. Neuroscience & Biobehavioral Reviews, 104, 231-239. https://doi.org/10.1016/j.neubiorev.2019.07.014
    Lee, H., Liau, Y. Y., Kim, S., & Ryu, K. (2020). Model-Based Human Robot Collaboration System for Small Batch Assembly with a Virtual Fence. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(3), 609-623. https://doi.org/10.1007/s40684-020-00214-6
    Lee, L.-M. (2011). High-order hidden Markov model and application to continuous mandarin digit recognition. Journal of information science and engineering, 27(6), 1919-1930.
    Lee, M.-L., Behdad, S., Liang, X., & Zheng, M. (2022). Task allocation and planning for product disassembly with human–robot collaboration. Robotics and Computer-Integrated Manufacturing, 76, 102306. https://doi.org/https://doi.org/10.1016/j.rcim.2021.102306
    Leng, J., Sha, W., Wang, B., Zheng, P., Zhuang, C., Liu, Q., Wuest, T., Mourtzis, D., & Wang, L. (2022). Industry 5.0: Prospect and retrospect. Journal of Manufacturing Systems, 65, 279-295. https://doi.org/https://doi.org/10.1016/j.jmsy.2022.09.017
    Li, C., Fahmy, A., & Sienz, J. (2019). An Augmented Reality Based Human-Robot Interaction Interface Using Kalman Filter Sensor Fusion. Sensors, 19(20), 4586. https://doi.org/10.3390/s19204586
    Li, C., Zheng, P., Yin, Y., Pang, Y. M., & Huo, S. (2023). An AR-assisted Deep Reinforcement Learning-based approach towards mutual-cognitive safe human-robot interaction. Robotics and Computer-Integrated Manufacturing, 80, 102471. https://doi.org/https://doi.org/10.1016/j.rcim.2022.102471
    Li, X., Nassehi, A., Wang, B., Hu, S. J., & Epureanu, B. I. (2023). Human-centric manufacturing for human-system coevolution in Industry 5.0. CIRP Annals, 72(1), 393-396. https://doi.org/https://doi.org/10.1016/j.cirp.2023.04.039
    Lin, C.-H., Wang, K.-J., Tadesse, A. A., & Woldegiorgis, B. H. (2022). Human-robot collaboration empowered by hidden semi-Markov model for operator behaviour prediction in a smart assembly system. Journal of Manufacturing Systems, 62, 317-333. https://doi.org/10.1016/j.jmsy.2021.12.001
    Lin, H.-I., Wibowo, F. S., Lathifah, N., & Chen, W.-H. (2022). Behavior Analysis for Increasing the Efficiency of Human–Robot Collaboration. Machines, 10(11), 1045.
    Liu, C., Cao, S., Tse, W., & Xu, X. (2017). Augmented Reality-assisted Intelligent Window for Cyber-Physical Machine Tools. Journal of Manufacturing Systems, 44, 280-286. https://doi.org/https://doi.org/10.1016/j.jmsy.2017.04.008
    Liu, H., & Wang, L. (2017). Human motion prediction for human-robot collaboration. Journal of Manufacturing Systems, 44, 287-294.
    Liu, H., Wang, Y., Ji, W., & Wang, L. (2018). A context-aware safety system for human-robot collaboration. Procedia Manufacturing, 17, 238-245.
    Liu, S., Wang, X. V., & Wang, L. (2022). Digital twin-enabled advance execution for human-robot collaborative assembly. CIRP Annals, 71(1), 25-28. https://doi.org/https://doi.org/10.1016/j.cirp.2022.03.024
    Liu, Y., Habibnezhad, M., & Jebelli, H. (2021). Brainwave-driven human-robot collaboration in construction. Automation in Construction, 124, 103556. https://doi.org/https://doi.org/10.1016/j.autcon.2021.103556
    Longo, F., Nicoletti, L., & Padovano, A. (2022). New perspectives and results for Smart Operators in industry 4.0: A human-centered approach. Computers & Industrial Engineering, 163, 107824. https://doi.org/10.1016/j.cie.2021.107824
    Lorenzini, M., Lagomarsino, M., Fortini, L., Gholami, S., & Ajoudani, A. (2023). Ergonomic human-robot collaboration in industry: A review. Frontiers in Robotics and AI, 9, 262.
    Lou, S., Tan, R., Zhang, Y., & Lv, C. (2023). Human-robot interactive disassembly planning in Industry 5.0 evaluation,
    Luxenburger, A., Mohr, J., Spieldenner, T., Merkel, D., Espinosa, F., Schwartz, T., Reinicke, F., Ahlers, J., & Stoyke, M. (2019, 2019-12-01). Augmented Reality for Human-Robot Cooperation in Aircraft Assembly. 2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR),
    Lv, Q., Zhang, R., Liu, T., Zheng, P., Jiang, Y., Li, J., Bao, J., & Xiao, L. (2022). A strategy transfer approach for intelligent human-robot collaborative assembly. Computers & Industrial Engineering, 168, 108047.
    Lyu, D., Yang, F., Kwon, H., Dong, W., Yilmaz, L., & Liu, B. (2021). TDM: Trustworthy Decision-Making Via Interpretability Enhancement. IEEE Transactions on Emerging Topics in Computational Intelligence, 1-12. https://doi.org/10.1109/tetci.2021.3084290
    Maddikunta, P. K. R., Pham, Q.-V., B, P., Deepa, N., Dev, K., Gadekallu, T. R., Ruby, R., & Liyanage, M. (2022). Industry 5.0: A survey on enabling technologies and potential applications. Journal of Industrial Information Integration, 26, 100257. https://doi.org/https://doi.org/10.1016/j.jii.2021.100257
    Makris, S., Karagiannis, P., Koukas, S., & Matthaiakis, A.-S. (2016). Augmented reality system for operator support in human–robot collaborative assembly. CIRP Annals, 65(1), 61-64. https://doi.org/10.1016/j.cirp.2016.04.038
    Malta, A., Mendes, M., & Farinha, T. (2021). Augmented Reality Maintenance Assistant Using YOLOv5. Applied Sciences, 11(11), 4758. https://doi.org/10.3390/app11114758
    Marino, E., Barbieri, L., Colacino, B., Fleri, A. K., & Bruno, F. (2021). An Augmented Reality inspection tool to support workers in Industry 4.0 environments. Computers in Industry, 127, 103412. https://doi.org/https://doi.org/10.1016/j.compind.2021.103412
    Matsas, E., Vosniakos, G.-C., & Batras, D. (2017). Effectiveness and acceptability of a virtual environment for assessing human–robot collaboration in manufacturing. The International Journal of Advanced Manufacturing Technology, 92(9-12), 3903-3917. https://doi.org/10.1007/s00170-017-0428-5
    Maurtua, I., Ibarguren, A., Kildal, J., Susperregi, L., & Sierra, B. (2017). Human–robot collaboration in industrial applications. International Journal of Advanced Robotic Systems, 14(4). https://doi.org/10.1177/1729881417716010
    Mengnan, L., Shuiliang, F., Huiyue, D., & Cunzhi, X. (2021). Review of digital twin about concepts, technologies, and industrial applications. Journal of Manufacturing Systems, 58.
    Michalos, G., Spiliotopoulos, J., Makris, S., & Chryssolouris, G. (2018). A method for planning human robot shared tasks. CIRP Journal of Manufacturing Science and Technology, 22, 76-90.
    Microsoft. (2023). Microsoft HoloLens 2. https://www.microsoft.com/en-us/hololens
    Mukherjee, D., Gupta, K., Chang, L. H., & Najjaran, H. (2022). A Survey of Robot Learning Strategies for Human-Robot Collaboration in Industrial Settings. Robotics and Computer-Integrated Manufacturing, 73, 102231. https://doi.org/10.1016/j.rcim.2021.102231
    Nahavandi, S. (2019). Industry 5.0—A Human-Centric Solution. Sustainability, 11(16), 4371. https://doi.org/10.3390/su11164371
    Narimatsu, H., & Kasai, H. (2017). State duration and interval modeling in hidden semi-Markov model for sequential data analysis. Annals of Mathematics and Artificial Intelligence, 81(3), 377-403.
    Nathalia Céspedes, D. R., Marcela Múnera and Carlos A. Cifuentes. (2021). Long-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the Pandemic. Frontiers in Neurorobotics.
    Oberc, H., Prinz, C., Glogowski, P., Lemmerz, K., & Kuhlenkötter, B. (2019). Human Robot Interaction – learning how to integrate collaborative robots into manual assembly lines. Procedia Manufacturing, 31, 26-31. https://doi.org/https://doi.org/10.1016/j.promfg.2019.03.005
    Olivares-Alarcos, A., Foix, S., & Alenya, G. (2019). On inferring intentions in shared tasks for industrial collaborative robots. Electronics, 8(11), 1306.
    Park, K.-B., Choi, S. H., Lee, J. Y., Ghasemi, Y., Mohammed, M., & Jeong, H. (2021). Hands-Free Human–Robot Interaction Using Multimodal Gestures and Deep Learning in Wearable Mixed Reality. Ieee Access, 9, 55448-55464. https://doi.org/10.1109/access.2021.3071364
    Pezzulo, G., & Ognibene, D. (2012). Proactive action preparation: Seeing action preparation as a continuous and proactive process. Motor control, 16(3), 386-424. https://journals.humankinetics.com/view/journals/mcj/16/3/article-p386.xml
    Pizoń, J., & Gola, A. (2023). Human–Machine Relationship—Perspective and Future Roadmap for Industry 5.0 Solutions. Machines, 11(2), 203. https://doi.org/10.3390/machines11020203
    Prati, E., Villani, V., Peruzzini, M., & Sabattini, L. (2021). An approach based on VR to design industrial human-robot collaborative workstations [Article]. Applied Sciences (Switzerland), 11(24), Article 11773. https://doi.org/10.3390/app112411773
    Proia, S., Carli, R., Cavone, G., & Dotoli, M. (2021). Control Techniques for Safe, Ergonomic, and Efficient Human-Robot Collaboration in the Digital Industry: A Survey. IEEE Transactions on Automation Science and Engineering, 1-22. https://doi.org/10.1109/tase.2021.3131011
    RoboDK. (2022). RoboDK [Computer software]. https://robodk.com/index
    Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., & Harnisch, M. (2015). Industry 4.0: The future of productivity and growth in manufacturing industries. Boston consulting group, 9(1), 54-89.
    Scalera, L., Giusti, A., Vidoni, R., Di Cosmo, V., Matt, D., & Riedl, M. (2020). Application of dynamically scaled safety zones based on the ISO/TS 15066: 2016 for collaborative robotics. Int. J. Mech. Control, 21, 41-49.
    Sebanz, N., Bekkering, H., & Knoblich, G. (2006). Joint action: bodies and minds moving together. Trends in cognitive sciences, 10(2), 70-76.
    Seidita, V., Lanza, F., Pipitone, A., & Chella, A. (2021). Robots as intelligent assistants to face COVID-19 pandemic. Briefings in Bioinformatics, 22(2), 823-831. https://doi.org/10.1093/bib/bbaa361
    Semm, A., Erfurth, C., & Uslu, S. (2021). Potentials of Augmented Reality – Insights into Industrial Practice. In Innovations for Community Services (pp. 103-122). Springer International Publishing. https://doi.org/10.1007/978-3-030-75004-6_8
    Sherwani, F., Asad, M. M., & Ibrahim, B. S. K. K. (2020, 26-27 March 2020). Collaborative Robots and Industrial Revolution 4.0 (IR 4.0). 2020 International Conference on Emerging Trends in Smart Technologies (ICETST),
    Sichao Liu, Lihui Wang, & Wang, X. V. (2020). Symbiotic human-robot collaboration: multimodal control using function blocks 53rd CIRP Conference on Manufacturing Systems,
    Siegrist, M. (2019). Trust and Risk Perception: A Critical Review of the Literature. Risk Anal, 41(3), 480-490. https://doi.org/10.1111/risa.13325
    Siew, C. Y., Ong, S. K., & Nee, A. Y. C. (2019). A practical augmented reality-assisted maintenance system framework for adaptive user support. Robotics and Computer-Integrated Manufacturing, 59, 115-129. https://doi.org/https://doi.org/10.1016/j.rcim.2019.03.010
    Skobelev, P., & Borovik, S. Y. (2017). On the way from Industry 4.0 to Industry 5.0: From digital manufacturing to digital society. Industry 4.0, 2(6), 307-311.
    Soh, H., Xie, Y., Chen, M., & Hsu, D. (2019). Multi-task trust transfer for human–robot interaction. The International Journal of Robotics Research, 39(2-3), 233-249. https://doi.org/10.1177/0278364919866905
    Sun, R. (2020). Potential of full human–machine symbiosis through truly intelligent cognitive systems. AI & SOCIETY, 35(1), 17-28. https://doi.org/10.1007/s00146-017-0775-7
    Tan, U. (1993). Speed and accuracy of aimed hand movements in left-handed human subjects: sex-related differences in motor control. Int J Neurosci, 72(3-4), 235-243. https://doi.org/10.3109/00207459309024111
    Taylor, W. D., & Snyder, L. A. (2017, June). The influence of risk perception on safety: A laboratory study. Safety Science, 95, 116–124. https://doi.org/10.1016/j.ssci.2017.02.011
    Tsarouchi, P., Makris, S., & Chryssolouris, G. (2016). Human–robot interaction review and challenges on task planning and programming. International Journal of Computer Integrated Manufacturing, 29(8), 916-931.
    Tsarouchi, P., Matthaiakis, A.-S., Makris, S., & Chryssolouris, G. (2017). On a human-robot collaboration in an assembly cell. International Journal of Computer Integrated Manufacturing, 30(6), 580-589. https://doi.org/10.1080/0951192x.2016.1187297
    Unity. (2023). Unity Technologies. Retrieved 6/6/2023 from https://unity.com/products/unity-engine
    Van Krevelen, D., & Poelman, R. (2010). A survey of augmented reality technologies, applications and limitations. International journal of virtual reality, 9(2), 1-20.
    Vicentini, F. (2021). Collaborative robotics: a survey. Journal of Mechanical Design, 143(4), 040802.
    Wang, K.-J., Lin, C. J., Tadesse, A. A., & Woldegiorgis, B. H. (2023). Modeling of human–robot collaboration for flexible assembly—a hidden semi-Markov-based simulation approach. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-023-11404-2
    Wang, W., Li, R., Diekel, Z. M., Chen, Y., Zhang, Z., & Jia, Y. (2019). Controlling Object Hand-Over in Human–Robot Collaboration Via Natural Wearable Sensing. IEEE Transactions on Human-Machine Systems, 49(1), 59-71. https://doi.org/10.1109/thms.2018.2883176
    Wang, X., Ong, S. K., & Nee, A. Y. (2016). A comprehensive survey of augmented reality assembly research. Advances in Manufacturing, 4, 1-22.
    Wang, X., Ong, S. K., & Nee, A. Y. C. (2016). Multi-modal augmented-reality assembly guidance based on bare-hand interface. Advanced Engineering Informatics, 30(3), 406-421. https://doi.org/https://doi.org/10.1016/j.aei.2016.05.004
    Wang, Z., Bai, X., Zhang, S., Billinghurst, M., He, W., Wang, P., Lan, W., Min, H., & Chen, Y. (2022). A comprehensive review of augmented reality-based instruction in manual assembly, training and repair. Robotics and Computer-Integrated Manufacturing, 78, 102407. https://doi.org/https://doi.org/10.1016/j.rcim.2022.102407
    Weber, D., Kasneci, E., & Zell, A. (2022). Exploiting Augmented Reality for Extrinsic Robot Calibration and Eye-based Human-Robot Collaboration. HRI,
    Weckenborg, C., Kieckhäfer, K., Müller, C., Grunewald, M., & Spengler, T. S. (2020). Balancing of assembly lines with collaborative robots. Business Research, 13(1), 93-132. https://doi.org/10.1007/s40685-019-0101-y
    Xian, W., Yu, K., Han, F., Fang, L., He, D., & Han, Q.-L. (2023). Advanced Manufacturing in Industry 5.0: A Survey of Key Enabling Technologies and Future Trends. IEEE Transactions on Industrial Informatics, 1-15. https://doi.org/10.1109/tii.2023.3274224
    Xu, X., Lu, Y., Vogel-Heuser, B., & Wang, L. (2021). Industry 4.0 and Industry 5.0—Inception, conception and perception. Journal of Manufacturing Systems, 61, 530-535.
    Xue, C., Qiao, Y., & Murray, N. (2020, 2020-08-01). Enabling Human-Robot-Interaction for Remote Robotic Operation via Augmented Reality. 2020 IEEE 21st International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM),
    Yang, B., Xie, X., Habibi, G., & Smith, J. R. (2021, 2021-03-08). Competitive Physical Human-Robot Game Play. Companion of the 2021 ACM/IEEE International Conference on Human-Robot Interaction,
    Yang, W., & Chen, L. (2021). Machine condition recognition via hidden semi-Markov model. Computers & Industrial Engineering, 158, 107430.
    Yin, Y., Ma, K., & Liu, M. (2020). Temporal Convolutional Network Connected with an Anti-Arrhythmia Hidden Semi-Markov Model for Heart Sound Segmentation. Applied Sciences, 10(20), 7049.
    Yu, S.-Z. (2015). Hidden Semi-Markov models: theory, algorithms and applications. Morgan Kaufmann.
    Zambiasi, L. P., Rabelo, R. J., Zambiasi, S. P., & Lizot, R. (2022). Supporting Resilient Operator 5.0: An Augmented Softbot Approach. In IFIP Advances in Information and Communication Technology (pp. 494-502). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-16411-8_57
    Zanchettin, A. M., Casalino, A., Piroddi, L., & Rocco, P. (2018). Prediction of Human Activity Patterns for Human–Robot Collaborative Assembly Tasks. IEEE Transactions on Industrial Informatics, 15(7), 3934-3942. https://doi.org/10.1109/tii.2018.2882741
    Zguda, P., Kołota, A., Venture, G., Sniezynski, B., & Indurkhya, B. (2021). Exploring the Role of Trust and Expectations in CRI Using In-the-Wild Studies. Electronics, 10(3), 347. https://doi.org/10.3390/electronics10030347
    Zhang, J., Wang, S., He, W., Li, J., Cao, Z., & Wei, B. (2022). Projected augmented reality assembly assistance system supporting multi-modal interaction. The International Journal of Advanced Manufacturing Technology, 123(3-4), 1353-1367. https://doi.org/10.1007/s00170-022-10113-6
    Zhang, Z., Peng, G., Wang, W., Chen, Y., Jia, Y., & Liu, S. (2022). Prediction-Based Human-Robot Collaboration in Assembly Tasks Using a Learning from Demonstration Model. Sensors, 22(11), 4279. https://doi.org/10.3390/s22114279
    Zhao, J., Mei, X., Ma, J., Wang, R., & Zhang, R. (2022). Research and Implementation on Key Technologies of Assembly Assistance System based on Augmented Reality. Journal of Physics: Conference Series,
    Židek, K., Pitel’, J., Balog, M., Hošovský, A., Hladký, V., Lazorík, P., Iakovets, A., & Demčák, J. (2021). Cnn training using 3d virtual models for assisted assembly with mixed reality and collaborative robots [Article]. Applied Sciences (Switzerland), 11(9), Article 4269. https://doi.org/10.3390/app11094269

    無法下載圖示 全文公開日期 2025/11/27 (校內網路)
    全文公開日期 2025/11/27 (校外網路)
    全文公開日期 2025/11/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE