簡易檢索 / 詳目顯示

研究生: 趙泓安
Hung-An Chao
論文名稱: 融合式小翼應用於小型軸流扇之性能強化研究
Blended Winglet Applied to a Small Axial-Flow Fan for Performance Enhancement
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 楊旭光
Shiuh-Kuang Yang
向四海
Su-Hai Hsiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 330
中文關鍵詞: 融合式翼尖小翼軸流扇升力氣動力性能數值模擬
外文關鍵詞: Blended Winglet, Axial-Flow Fans, Lift, Aerodynamic Performance, Numerical Simulation
相關次數: 點閱:405下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

機翼之翼尖小翼設計具有增加升力與節省燃料的功能,本研究擬將之應用於軸流扇設計中,以達到減緩翼尖渦流進而提升風機性能的效用,首先選定波音737的融合式小翼應用於6038軸流扇,並以數值工具對增設小翼所產生之氣動力性能與流場差異進行比較。透過CFD商用軟體對機翼在有與無融合式小翼下,就其於不同攻角之升、阻力進行分析,結果顯示具小翼機翼之升力大幅提高,在攻角到達失速區以前,具小翼機翼的升力都較裸翼高48~57%;由於軸流扇運轉之操作雷諾數較飛機低,在此藉由建立小翼於低操作雷諾數的升、阻力資料,來確認小翼應用於軸流扇也有類似效果。接著選用市售6038軸流扇作為基準風扇,經模擬流場發現其翼端間隙之回流非常嚴重,故將融合式小翼應用在基準風扇中,以完成具小翼風扇之設計來改善此問題;在模擬比對兩者之氣動力性能後,發現具小翼風扇之回流現象減緩、且最大流量上升3.4%(65.6 CFM增為67.9 CFM),而最大靜壓則因總體葉片面積略減,而由77.4 mmAq略降為71.2 mmAq。尤其值得注意是,在中低阻抗操作點(30%最大靜壓)產生最大65.8%之流量升幅,而扭矩在低阻抗操作點(15%最大靜壓)有24.8%最大提升,皆可證明其升力在此阻抗區間有所提高。至於中阻抗操作點 (50%最大靜壓)至最大靜壓點的操作區間,具小翼風扇之扭矩與軸向受力皆較低,代表在高阻抗操作區間具小翼風扇擁有較好的效率。
確認融合式翼尖小翼對軸流扇之氣動性能有幫助後,本文系統性地改動小翼設計參數、移除部分小翼、及更動小翼方向,以期找出各參數之影響及優化方向;模擬分析結果彙整顯示,最對稱之具小翼風扇-TT型的表現最佳,可以在最大壓力不變下提高3.7%之最大流量,且中低阻抗操作點(30%最大靜壓)之流量也上升4.4%。移除部分小翼之規劃皆不利於性能,其中以移除1/2小翼型之最大壓力、流量及中低阻抗操作點之流量降低最多,分別為7.0%、11.8%以及49.3%;而朝葉片吸、壓力面各生長小翼之方案,能更有效地減弱翼尖渦流且增加葉片面積,使風機之流量與壓力都提高,而向壓力面生長小翼之提升效果則受其軸向面積影響甚大,若不足則無法彰顯減弱翼尖渦流之效用。綜合歸納上述結果,當融合式翼尖小翼應用於轉速較低之軸流扇,確實能達到減緩翼尖渦流的效用,進而提高升力與強化風機之性能。


This research intends to investigate whether the aerodynamic performance of a small axial-flow fan can be enhanced by introducing the winglet, which is extensively used in the aircraft wing for increasing lift and saving fuel. Here, the blended winglet design of Boeing 737 is chosen as the base geometry to be applied on the rotor blade of a 6038 (60x60x38 mm3) axial-flow fan. Firstly, within the framework of CFD technology, performance superiority of the airplane wing with a winglet is confirmed under a range of low Reynolds numbers corresponding to the fan operation. The numerical flow field reveals that the strength of wingtip vortices are diminished significantly after adding the wingtip. Also, the lift of wing is 48~ 57% higher than that of the wing without wingtip under various attack angles before reaching the stall zone. Thereafter, the original 6038 fan is analyzed numerically to obtain its aerodynamic performance and flow field for serving as the comparison basis. And, serious reverse flow is identified in the tip region of this reference fan. Obviously, this flow feature is appropriate for utilizing the winglet design to reduce the wingtip vortex by preventing the pressure leakage generated from the pressure surface to the suction surface of rotor blade. Later, a blended winglet pointing to the pressure surface near the rotor wingtip is implemented on the reference fan for performance improvement. After comparing the calculated performances of two fans with/without the winglet, it is found that winglet addition causes a 3.4% (65.6 to 67.9 CFM) increase and an 8.0% drop (77.4 to 71.2 mmAq) on the maximum flow rate and static pressure, respectively. Note that, the largest increase (65.8%) on volume flow rate is found at the operating point of 30% Pmax. Also, the required torque and axial force applied on the rotor reach the maximum increases of 24.8% and 59.2% at the low-impedance operating point (15% of Pmax). Thus, the lift is substantially enhanced at this operating point. Regarding the middle-to-high resistance range (50~100% of Pmax), smaller axial force and torque on the rotor are observed and can result in a higher fan efficiency.
Subsequently, the parametric study on the winglet design is executed systematically with the aids of numerical simulation to attain the proper design approach. The design parameters considered here include twisting the winglet, adding the upper/downward winglet, and deleting partial winglet. The outcome shows the best winglet, which is featured with a nearly symmetric geometry and denoted as TT model, can produce an extra 3.73 and 4.44% on the flow rates under the free-delivery and the mid-low impedance (30% Pmax) operating point, while the maximum static pressure remains the same. Also, the removal of partial winglet demonstrates negative effects on the fans performance. Regarding the addition of upper/downward winglets, CFD simulation indicates that the downward winglet can retain the high-pressure on the pressure surface from leaking to the free surface, thus can diminish the winglet vortex, while the upper winglet cannot function properly to prevent this vortex generation. Also, adding both downward and upper winglets is capable to lessen the wingtip vortex and increase the blade surface; thus, the maximum flow rate and static pressure are both enlarged. Nevertheless, the complex geometry of this design results in the technical and economic obstacles for its mass production. In addition, the performance enhancement induced by the downward winglet (toward the pressure surface) is severely affected by the tip area of winglets, which should be large enough to weaken the wingtip vortices. In conclusion, this study successfully demonstrates that adding the blended winglet on rotor blade can decrease wingtip vortices, increase the lift, and enhance the performance of an axial-flow fan.

摘 要 I ABSTRACT III 致 謝 V 目 錄 VI 圖索引 X 表索引 XVIII 符號索引 XIX 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1風扇設計 3 1.2.2風機性能改善 8 1.2.3扇葉之升力改善 15 1.3 研究動機與方法 20 1.4 本文大綱 24 第二章 風扇設計 27 2.1 風扇設計理論 29 2.1.1氣體對靜止翼列的作用 30 2.1.2移動翼列對氣體的作用 37 2.1.3無摩擦阻力之葉片計算 41 2.1.4含摩擦阻力之葉片計算 45 2.2 軸流風扇設計流程 48 2.2.1軸流風扇架構 48 2.2.2三維葉片設計 51 2.2.3三維風扇 58 2.2.4具小翼風扇之設計概念 61 2.2.5飛機升力原理與融合式翼尖小翼 64 第三章 數值方法 71 3.1 統御方程式 71 3.2 紊流模型理論 74 3.2.1雷諾數平均數值模擬法 75 3.2.2大尺度渦旋計算法 77 3.3 數值計算方法與理論 80 3.3.1數值求解流程 80 3.3.2離散化方程式 83 3.3.3上風差分法 85 3.3.4速度與壓力的耦合 86 3.4 邊界條件 89 第四章 具融合式小翼機翼的升阻力性能驗證 92 4.1 翼剖面參數與機翼模型介紹 92 4.2 網格建立與數值方法 94 4.3 模擬結果比對 100 4.4 低雷諾數下小翼升力提升確認 108 4.4.1趨勢確認 113 4.4.2兩種極限速度之模擬結果探討 117 第五章 基準風扇之模擬分析 119 5.1 基準風扇之網格規劃 119 5.2 基準風扇之性能模擬結果與分析 129 5.2.1整體流場分析 133 5.2.2壓力場分析 146 5.2.3細部流場分析 162 第六章 具小翼風扇之設計與性能模擬分析 182 6.1 融合式小翼應用於基準風扇之設計方法 182 6.2 模擬風扇性能曲線之比較 185 6.3 流場與壓力場分析比較 193 6.3.1整體流場分析比較 193 6.3.2壓力場分析比較 203 6.3.3細部流場分析比較 214 6.3.4小結 224 第七章 具小翼風扇之設計參數分析 225 7.1 小翼截面之位置移動 225 7.2 小翼截面之旋轉角度 238 7.3 移除部分小翼 257 7.4 不同方向之小翼 275 第八章 結論與建議 291 8.1 結論 291 8.1.1融合式翼尖小翼以提高升力之效果確認 292 8.1.2具小翼風扇之氣動力性能 293 8.1.3具小翼風扇之設計參數分析 294 8.2 建議 298 參考文獻 301

[1] 蔡幸甫,“散熱材料發展商機”,IEK產業情報網-產業焦點,2007年。
[2] Zhu, X. C., Lin, W. L., and Du, Z. H., “Experimental and Numerical Investigation of the Flow Field in the Tip Region of an Axial Ventilation Fan,” Journal of Fluids Engineering, Vol. 127, March, pp. 299-307, 2005.
[3] Eck, B., Fans: Design and Operation of Centrifugal, Axial-Flow, and Cross-Flow Fans, Pergamon Press, New York, 1973.
[4] Chen, S. H. and Williams, M. H., “Panel Method for Counter-Rotating Propfans,” Journal of Propulsion and Power, Vol. 7, No. 4, July-August 1991.
[5] Mckenzie, A.B., Axial Flow Fans and Compressors, Published by Ashgate Publishing Limited, 1997.
[6] Bleier, F. P., Fan Handbook: Selection, Application, and Design, McGraw-Hill, New York, 1998.
[7] Wright, T., Fluid Machinery: Performance, Analysis, and Design,
CRC Press, Boca Raton, New York, 1999.
[8] Shepherd, D. G., Principles of Turbomachinery, Macmillan Publishing CO. Inc., New York, 1956.
[9] Wallis, R. A., Axial Flow Fans & Ducts, John Wiley & Sons, Inc., New York, 1983.
[10] 押田良輝,送風機技術讀本,復興出版社,1979年。
[11] 聶能光、李福忠,風機節能與降噪,科學出版社,1990年。
[12] 簡煥然、施銘銓,“軸流風扇性能測試技術與扇葉技術”,機械工業雜誌,269-288頁,民國八十一年八月。
[13] 施銘銓,“小型冷卻風扇開發介紹”,機械工業雜誌,148-156頁,民國八十四年五月。
[14] Moming, Su., Chuan-Gang, Gu. and Yong-Miao, Miao., “Study of Three-Dimensional Viscous Flow Field in Axial-Flow Fan,” American Society of Mechanical Engineers ASME, New York, NY, USA. 8pp 86-GT-420, 1996.
[15] 張瑞釗、許福忠、施良璘、張起領,“渦輪葉片參數設計法”,中山科學研究院第一研究所研究報告,民國七十五年六月。
[16] 許文英、陳世雄,“軸流式渦輪葉片參數設計”,中國航空太空學會第三十七界學術研討會論文集,1995。
[17] 張裕慶,“軸流風扇之數值模擬”,台灣科技大學碩士論文,1997。
[18] 林育洲,“軸流風扇之數值與實驗分析”,國立台灣科技大學機械工程系碩士論文,1998年。
[19] 簡宏斌,“PC風扇之三維數值模擬分析”,國立台灣科技大學機械工程系碩士論文,1999年。
[20] 林鴻志,“Pentium 4 處理器冷卻風扇之製造與實驗研究”,國立台灣科技大學機械工程系碩士論文,1999年。
[21] Damle, S. and Dang, T. “Practical Use of Three-Dimensional Inverse Method for Compressor Blade Design,” ASME Journal of Turbomachinery, Vol. 121, pp. 321-325, 1999.
[22] Obayashi, S. and Takanashi, S., “Genetic Optimization of Target Pressure Distributions for Inverse Design Methods,” AIAA Journal, Vol. 34, No. 5, pp. 881-886, 1996.
[23] 高崇偉,“軸流式風扇葉片最佳幾何形狀之設計”,國立成功大學系統及船舶機電工程學系學位論文,2010年。
[24] Mizuno, T. and Kikuchi, K., “Characteristic of Axial Flow Fan with Diagonal Flow Hub,” SAE Transcations, Vol. 99, No. 6, pp. 49-55, 1990.
[25] Kaneko, K., Setoguchi, T., Nakano, T., and Inoue, M., “Effect of Blade Surface Roughness on Performances of Axial Flow Fans with Different Blade Cambers,” Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan, Vol. 50, No. 459, pp. 2812-2817, 1984.
[26] Longhouse, R.E., “Vortex Shedding Noise of Low Tip Speed, Axial Flow Fans,” Journal of Sound and Vibration, Vol. 53, No. 1, pp. 25-46, 1997.
[27] 林顯群、陳文亮、羅玉山,”軸流風扇之性能及噪音分析”,中國航空太空學會第四十屆學術研討會,上冊,87-94頁,1998年。
[28] 陳文亮,“小型冷卻風扇之性能與噪音改善研究”,國立台灣科技大學機械工程技術研究所碩士論文,1998年。
[29] 陳正鋼,“風扇葉片的結構改良”,中華民國發明專利 M259470,2005年。
[30] 劉志弘,“表面粗糙效應對軸流式冷卻風扇性能之影響”,國立成功大學航空太空工程學系碩士在職專班學位論文,2005年。
[31] 簡嘉宏,“軸流式風扇之設計、模擬與實驗”,國立台灣科技大學機械工程系碩士論文,2010年。
[32] Hideo, F. and Hiroyuki, T., “A Study on Configurations of Casing Treatment for Axial Flow Compressors,” Nippon Kikai Gakkai Ronbunshu, B Hen/Transaction of Japan, Vol. 49, No. 448, pp. 2945-2953, 1983.
[33] Thompson, D. W., King, P. I., and Rab, D. C., “Experimental Investigation of Stepped Tip Gap Effect on the Performance of a Transonic Axial Flow Compressor Rotator,” Journal of Turbomachinery, Vol. 120, pp. 477-485, 1998.
[34] Shimada, K., Kimura, K., and Watanabe, H., “A Study of Radiator Cooling Fan with Labyrinth Seal,” JSAE Review, Vol. 24, No. 4, pp. 431-439, October 2003.
[35] 林玟孜,“小型軸流風扇性能之數值與實驗研究”,國立台灣科技大學機械工程系碩士論文,2016年。
[36] 嚴文祺,“軸流式風機的性能與噪音特性之整合研究”,國立台灣科技大學機械工程系碩士論文,2017年。
[37] 李虹錤,“小型雙級軸流風扇性能之數值與實驗研究”,國立台灣科技大學機械工程系碩士論文,2011年。
[38] 周建安,“小型冷卻風扇在不同流阻下之性能研究”,國立台灣科技大學機械工程技術研究所博士論文,2004年。
[39] Soltani, M. R., Ghorbanian, K., and Nazarinia, M., “Experimental Ivestigation of the Effect of Various Winglet Shapes on the Total Pressure Distribution behind a Wing,” Proceeding of the 24th International Council of Aeronautical Sciences. Yokohama, Japan, 2004.
[40] Li, Y. C., Wang, J. J., and Hua, J., “Experimental Investigations on the Effects of Divergent Trailing Edge and Gurney Flaps on a Supercritical Airfoil,” Science Direct, Vol. 11, pp. 93-95, 2006.
[41] 謝新茂、楊尚智,“風扇葉片導流結構”,中華民國發明專利 I323764, 2006年。
[42] 鄭育政,“具襟翼之翼形應用於風扇設計的可行性研究”,國立台灣科技大學機械工程系碩士論文,2011年。
[43] 羅世琦,“具側翼之軸流風扇的模擬與實驗整合研究”,國立台灣科技大學機械工程系碩士論文,2011年。
[44] Beskales, S. A., Ayad, S., Higa Zy, M. G., Abdellatif, O., and Anwar, S., “The Effect of Tip End-Blade Geometry on the Axial Fans Performance,” Eleventh International Conference of Fluid Dynamics, Alexandria, Egypt, 2013.
[45] You, D. and Moin, P., “Large Eddy Simulation of Flow Separation over an Airfoil with Synthetic Jet Control,” Center for Turbulence Research Annual Research Briefs, 2006.
[46] 陶乃俠,“實用空氣動力學重點概述”,社團法人中華航空協會,2012年。
[47] Freitag, W. and Schulze, E. T., “Blended Winglets Improve Performance,” Boeing Aero Quarterly, Vol. 3, 2009.
[48] Michele, R., “Winglets”, Aerospace Engineering, Retrieved from https://www.aerospacengineering.net/winglets, 2013.
[49] Smirnov, R., Shi, S., and Celik, I., “Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling,” Journal of Fluids Engineering, Vol. 123, pp. 359-371, 2001.
[50] Uranga, A., Persson, P., Drela, M., and Peraire, J., “Implicit Large Eddy Simulation of Transitional Flows over Airfoils and Wings,” 19th AIAA Computational Fluid Dynamics Conference, San Antonio, Texas, 2009.
[51] 中村寬治,“飛機力學超入門:讓飛機飛上天的航空基礎工程學”, 魏俊崎 譯,晨星出版有限公司,2017年。

無法下載圖示 全文公開日期 2024/08/27 (校內網路)
全文公開日期 2029/08/27 (校外網路)
全文公開日期 2029/08/27 (國家圖書館:臺灣博碩士論文系統)
QR CODE