簡易檢索 / 詳目顯示

研究生: 呂和謙
He-Cian Lu
論文名稱: 電化學法計數表面改質鋼網捕捉與培養釋放的循環腫瘤細胞於食道癌預後追蹤
Capture of Circulating Tumor Cells with Modified Stain Steel Mesh by Electrochemical Analysis to Clinically Track the Prognosis of Esophageal Cancer from Whole Blood Specimens
指導教授: 陳建光
Jem-Kun Chen
口試委員: 鄭智嘉
Chih-Chia Cheng
黃才旺
Tsai-Wang Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 196
中文關鍵詞: 聚多巴胺分支型聚乙烯亞胺海藻酸不鏽鋼網循環腫瘤細胞電化學偵測細胞培養及釋放食道癌
外文關鍵詞: Stainless steel mesh, Circulating tumor cells, Electrochemical detection, Cell culture and release, Esophageal cancer
相關次數: 點閱:287下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用孔徑大小25 μm的不銹鋼網作為基材,接著將不銹鋼網與多巴胺(Dopamine)單體放置在微鹼的溶液當中以在不銹鋼網表面形成奈米級的聚多巴胺顆粒,並在過程中摻入分支型聚乙烯亞胺 (Branched polyethyleneimine,BPEI),再以EDC/NHS共價鍵固定法將海藻酸(Alginate)接枝在不銹鋼網表面,接著,同樣利用EDC/NHS共價鍵固定法修飾Protein G,再透過Protein G與Anti-EpCAM專一性抗體間的強親和力將其固定在表面,最後利用牛血清白蛋白(Bovine Serum Albumin,BSA)在表面形成抗沾黏層完成試片的製備,再結合自製的流體裝置進行各項循環腫瘤細胞與病患檢體中目標細胞的抓取,利用電化學方法進行定量分析,並在後端進行細胞培養以及利用海藻酸裂解酶(Alginate lyase)進行細胞的釋放。
    從實驗結果得知,在利用電化學阻抗頻譜分別偵測5、10、25、50顆循環腫瘤細胞於流速1hr/3mL、1.5hr/3mL的條件下,阻抗變化有高度的正相關,R2值為0.9776,也透過DLD-1與Hela cells確認抗體之專一性。即使在10000顆Hela cells的情況下,電化學阻抗值也並未發生變化;此外,我們也將試片應用於細胞培養,細胞活性在第4天可達到341 %,遠高於在傳統培養盤上的184 %,在細胞培養3-4天後利用海藻酸裂解酶進行釋放也發現良好的細胞釋放效果。
    在臨床結果的部分,在收集到的18名患者檢體中,3名第一期的患者皆沒有捕獲到循環腫瘤細胞,而4名第四期的患者抓取到之循環腫瘤細胞顆數皆在10顆以上,而病患之腫瘤大小與侵犯位置(T)數值與抓取到之顆數也同樣呈現正相關,在T1時抓取到循環腫瘤細胞的機率為0 %,T2為50 %,T3為78 %。在回診的案例當中,術前術後循環腫瘤細胞差值8顆的患者已確認復發,而差值0顆的則並未復發,顯示此試片可用於判別病人期數以及作為術前術後治療效果的指標。


    In this experiment, we used a stainless steel mesh with a pore size of 25 μm as a substrate. The substrate and dopamine are placed in tris buffer to form polydopamine particles on the surface of the stainless steel mesh. In this process, the branched polyethyleneimine (BPEI) is added. And we used the EDC/NHS to graft the alginic acid (Alginate) onto the surface of the stainless steel mesh. Same as well, Protein G was modified on the surface through EDC/NHS. And we modified Anti-EpCAM specific antibody on the surface through the strong affinity between Protein G and Anti-EpCAM. Finally, we use bovine serum albumin (Bovine Serum Albumin, BSA) to form an anti-fouling layer on the surface to complete the preparation of the specimen. We builded a self-made fluid device combined with the specimen to capture the circulating tumor cells, using electrochemical methods for quantitative analysis. And we applied the specimen to do the cell culture and alginate lyase to release the cells.
    The results show that when we used electrochemical methods to do the quantitative analysis for 5, 10, 25, and 50 circulating tumor cells under the flow rate of 1hr /3mL and 1.5hr/3mL, a high positive correlation was found in impedance changes. The specificity of the antibody was also confirmed through DLD-1 and Hela cells. Even 10000 Hela cells would not cause the impedance changes. In addition, we also applied the specimen to cell culture. The cell viability reached 341% on the fourth day, which was much higher than 184% on the normal cell culture flask. We also used alginate lyase to release the cells after 3-4 days of cell culture, and showed good cell release effect.
    In the clinical results, we collected 18 patient sample. All of the stage I patient showed CTCs negative, when all stage IV patient show CTCs positive and the cell counts were more than 10. And the size of the cancer tumor and whether or not it has grown into nearby tissue (T) and CTCs showed a high positive correlation. T1 patient showed 0 % CTCs positive, T2 patient showed 50 %, and T3 patient showed 78 %. And we found that, patient with a difference of 8 CTCs after surgery have confirmed recurrence when patient with a difference of 0 have not. This result showed that this specimen can be used to determine the stages and treatment effect.

    1. 緒論 1 1.1. 研究背景 1 1.2. 研究動機與目的 6 2. 文獻回顧與實驗理論 8 2.1. 循環腫瘤細胞 8 2.1.1. 循環腫瘤細胞介紹 8 2.1.2. 循環腫瘤細胞生物特性標記 10 2.1.3. 食道癌循環腫瘤細胞與病患情況之相關性 12 2.1.4. 循環腫瘤細胞抓取 15 2.1.5. 循環腫瘤細胞培養 21 2.2. 電化學偵測 24 2.2.1. 電化學感測器 24 2.2.2. 生物感測器於電化學之應用 25 2.3. 聚多巴胺 28 2.4. 分支型聚乙烯亞胺 31 2.5. 聚多巴胺與分支型聚乙烯亞胺之鍵結 34 2.6. 海藻酸 35 2.7. 生物分子與材料介面固定法 37 2.7.1. 生物分子固定法 37 2.7.2. 共價鍵固定法 (EDC/NHS reaction) 38 2.7.3. 生物親合法 40 2.7.4. 牛血清白蛋白 41 3. 儀器原理 42 3.1. 高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope) 42 3.2. 接觸角量測儀 (Contact Angle Meter) 44 3.3. 可見光紫外光分光光譜儀 (Ultraviolet-visible spectroscopy,UV-vis) 46 3.4. 恆電位分析儀 (Potential Stat) 49 3.4.1. 循環伏安分析法 50 3.4.2. 電化學阻抗頻譜 52 3.5. 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectrometer) 54 3.6. X射線光電子能譜儀 (X-Ray Photoelectron Spectroscope) 59 3.7. 雷射共軛焦顯微鏡 (Spectral Confocal and Multiphoton System) 61 3.8. 螢光顯微鏡 63 3.9. 表面電位分析儀 (Zeta-potential) 65 3.10. 全波長多功能微盤分析儀 67 4. 實驗流程與方法 70 4.1. 實驗流程圖 70 4.2. 實驗藥品 71 4.3. 實驗儀器 74 4.4. 實驗步驟 77 4.4.1. 不鏽鋼網基材之選擇 77 4.4.2. 不銹鋼網試片製備 77 4.4.3. 多巴胺以及分支型聚乙烯亞胺之鍵結與聚合於不銹鋼網基材表面 77 4.4.4. 海藻酸之接枝 78 4.4.5. 修飾專一性抗體於電極表面 79 4.4.6. 細胞及生物檢體處理與染色 79 4.4.6.1. 血液處理 ….80 4.4.6.2. 細胞株處理- HCT-116 (台北醫學大學李愛薇老師提供) 81 4.4.6.3. 細胞株處理- DLD-1 (台北醫學大學李愛薇老師提供) 83 4.4.6.4. 細胞株處理- Hela cell (台北醫學大學李愛薇老師提供) 84 4.4.7. 利用流體裝置抓取循環腫瘤細胞 84 4.4.8. 紫外光-可見光標準曲線分析血液相容性 84 4.4.9. 電化學分析儀進行細胞定量檢測 85 4.4.10. 細胞培養 86 4.4.10.1. 細胞培養於基材 86 4.4.10.2. Cell Counting Kit (CCK-8) 染劑判讀細胞活性 86 4.4.11. 顯微鏡試片製作 87 4.4.11.1. 掃描式電子顯微鏡試片製作 87 4.4.11.2. 螢光顯微鏡及雷射共軛焦顯微鏡試片 87 4.4.12. 紫外光-可見光標準曲線分析專一性抗體接枝量 88 5. 實驗結果與討論 89 5.1. 聚多巴胺、分支型聚乙烯亞胺與海藻酸包覆不銹鋼網之分析 89 5.1.1. 聚多巴胺、分支型聚乙烯亞胺與海藻酸包覆不銹鋼網之定性分析 91 5.1.1.1. 聚多巴胺、分支型聚乙烯亞胺之紫外光/可見光光譜圖 91 5.1.1.1.1. 聚多巴胺之紫外光/可見光光譜圖 91 5.1.1.1.2. 聚多巴胺、分支型聚乙烯亞胺之紫外光/可見光光譜圖 93 5.1.1.2. 聚多巴胺、分支型聚乙烯亞胺與海藻酸包覆不銹鋼網-接觸角 94 5.1.1.2.1. 聚多巴胺包覆不鏽鋼網之接觸角 94 5.1.1.2.2. 分支型聚乙烯亞胺與海藻酸包覆不銹鋼網之接觸角 95 5.1.1.3. 聚多巴胺、分支型聚乙烯亞胺與海藻酸之FTIR光譜圖 97 5.1.1.4. 聚多巴胺、分支型聚乙烯亞胺與海藻酸包覆不銹鋼網-XPS能譜圖 99 5.1.2. 聚多巴胺、分支型聚乙烯亞胺與海藻酸包覆不銹鋼網之表面形貌SEM 103 5.2. 接枝Protein G與Anti-EpCAM專一性抗體於不銹鋼網表面 108 5.2.1. 接枝不銹鋼網表面之定量分析 109 5.2.2. 接枝Anti-EpCAM專一性抗體於不銹鋼網表面之定量分析 113 5.2.3. 接枝Anti-EpCAM專一性抗體於不銹鋼網表面之定性分析 117 5.3. Anti-EpCAM專一性抗體於不銹鋼網表面之專一性抓取分析 119 5.3.1. 牛血清白蛋白 (Bovine Serum Albumin,BSA) 用於抗非目標細胞黏附之效果 120 5.3.2. 自製流體裝置之參數對於HCT-116抓取效率之影響 122 5.3.2.1. 各流速之細胞抓取率 122 5.3.2.2. 流速1 hr/ 3mL、1.5 hr/ 3mL之細胞抓取率 124 5.3.3. 選擇性 127 5.4. 電化學分析技術偵測微量HCT-116 130 5.4.1. 電化學方法之穩定性 130 5.4.2. 電化學方法之準確性 133 5.5. 細胞培養 140 5.5.1. 螢光顯微鏡與共軛焦顯微鏡觀察細胞生長 140 5.5.2. Cell Counting Kit-8 (CCK-8)判斷細胞生長 143 5.5.3. 海藻酸裂解酶 (Alginate Lyase) 於細胞釋放之效果 145 5.6. 臨床檢體測試 147 5.6.1. 血液相容性測試 147 5.6.2. 臨床檢體測試 149 5.6.2.1. 臨床檢體實驗流程與判斷標準 149 5.6.2.2. 臨床檢體之分析結果 151 6. 結論 159 7. 參考文獻 161

    [1] Rice TW, Ishwaran H, Ferguson MK, Blackstone EH, Goldstraw P, "Cancer of the Esophagus and Esophagogastric Junction: An Eighth Edition Staging Primer," J Thorac Oncol, vol. 12, no. 1, pp. 36–42, 2017.
    [2] Rebecca L. Siegel, Kimberly D. Miller, and Ahmedin Jemal, DVM, "Cancer Statistics, 2019," CA Cancer J Clin, vol.69, pp. 7-34, 2019.
    [3] Ashworth, T.R., "A case of cancer in which cells similar to those in the tumours were seen in the blood after death," Aust Med J., vol. 14, p. 146, 1869.
    [4] H. J. Yoon, M. Kozminsky, and S. Nagrath, "Emerging role of nanomaterials in circulating tumor cell isolation and analysis," ACS nano, vol. 8, no. 3, pp. 1995-2017, 2014.
    [5] B. Weigelt, J. L. Peterse, and L. J. Van't Veer, "Breast cancer metastasis: markers and models," Nature reviews cancer, vol. 5, no. 8, p. 591, 2005.
    [6] G. P. Gupta and J. Massagué, "Cancer metastasis: building a framework," Cell, vol. 127, no. 4, pp. 679-695, 2006.
    [7] A. F. Chambers, A. C. Groom, and I. C. MacDonald, "Metastasis: dissemination and growth of cancer cells in metastatic sites," Nature Reviews Cancer, vol. 2, no. 8, p. 563, 2002.
    [8] I. J. Fidler, "The pathogenesis of cancer metastasis: the'seed and soil'hypothesis revisited," Nature Reviews Cancer, vol. 3, no. 6, p. 453, 2003.
    [9] J. P. Thiery, "Epithelial–mesenchymal transitions in tumour progression," Nature Reviews Cancer, vol. 2, no. 6, p. 442, 2002.
    [10] H. Yamaguchi, J. Wyckoff, and J. Condeelis, "Cell migration in tumors," Current opinion in cell biology, vol. 17, no. 5, pp. 559-564, 2005.
    [11] J. J. Christiansen and A. K. Rajasekaran, "Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis," Cancer research, vol. 66, no. 17, pp. 8319-8326, 2006.
    [12] Tong Wu, Bin Cheng, and Liwu Fu, "Clinical Applications of Circulating Tumor Cells in Pharmacotherapy: Challenges and Perspectives," Molecular Pharmacology, vol. 92, no. 3, pp. 232-239, 2017.
    [13] Went PT, Lugli A, Meier S, et al., "Frequent EpCam protein expression in human carcinomas," Human pathology, vol. 35, no. 1, pp. 122-128, 2004.
    [14] M. Münz, C. Kieu, B. Mack, B. Schmitt, R. Zeidler, and O. Gires, "The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation," Oncogene, vol. 23, no. 34, p. 5748, 2004.
    [15] C. A. O’Brien, A. Pollett, S. Gallinger, and J. E. Dick, "A human colon cancer cell capable of initiating tumour growth in immunodeficient mice," Nature, vol. 445, no. 7123, p. 106, 2007.
    [16] M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke, "Prospective identification of tumorigenic breast cancer cells," Proceedings of the National Academy of Sciences, vol. 100, no. 7, pp. 3983-3988, 2003.
    [17] J. Stingl, C. J. Eaves, I. Zandieh, and J. T. Emerman, "Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue," Breast cancer research and treatment, vol. 67, no. 2, pp. 93-109, 2001.
    [18] Schmelzer E, Zhang L, Bruce A, et al., "Human hepatic stem cells from fetal and postnatal donors," J Exp Med., vol. 204, no. 8, pp. 1973-1987, 2007.
    [19] Trzpis M, McLaughlin PM, van Goor H, et al., "Expression of EpCAM is up‐regulated during regeneration of renal epithelia," J Pathol., vol. 216, no. 2, pp. 201-208, 2008.
    [20] Went PT, Lugli A, Meier S, et al., "Frequent EpCam Protein Expression in Human Carcinomas,"Human Pathology, vol. 35, no.1, pp. 122-128, 2004.
    [21] Hoeppner J, Kulemann B, "Circulating Tumor Cells in Esophageal Cancer," Oncol Res Treat, vol. 40, no.7-8, pp. 417-422, 2017.
    [22] Li SP, Guan QL, Zhao D, et al. "Detection of Circulating Tumor Cells by Fluorescent Immunohistochemistry in Patients with Esophageal Squamous Cell Carcinoma: Potential Clinical Applications. " Med Sci Monit, vol. 22, pp. 1654-1662, 2016.
    [23] Reeh M, Effenberger KE, Koenig AM, et al., "Circulating Tumor Cells as a Biomarker for Preoperative Prognostic Staging in Patients With Esophageal Cancer." Ann Surg, vol. 261, no. 6, pp. 1124-1130, 2017.
    [24] Zhao Y, Zhao S, Chen Y, et al. "Isolation of circulating tumor cells in patients undergoing surgery for esophageal cancer and a specific confirmation method " Oncol Lett, vol. 17, no. 4, pp. 3817-3825, 2019.
    [25] Yin XD, Yuan X, Xue JJ, Wang R, Zhang ZR, Tong JD, "Clinical significance of carcinoembryonic antigen-, cytokeratin 19-, or survivin-positive circulating tumor cells in the peripheral blood of esophageal squamous cell carcinoma patients treated with radiotherapy " Dis Esophagus, vol. 25, no. 8, pp. 750-756, 2012.
    [26] J. Dong et al., "Nanostructured Substrates for Detection and Characterization of Circulating Rare Cells: From Materials Research to Clinical Applications," Adv Mater, vol. 32, no.1, 2020
    [27] C. Alix-Panabières and K. Pantel, "Challenges in circulating tumour cell research," Nature Reviews Cancer, vol. 14, no. 9, pp. 623-631, 2014.
    [28] N. J. Nelson, "Circulating tumor cells: will they be clinically useful?," J Natl Cancer Inst., vol. 102, no. 3, pp. 146–148, 2010.
    [29] Yu M, Stott S, Toner M, Maheswaran S, Haber DA, "Circulating tumor cells: approaches to isolation and characterization," J Cell Biol., vol. 192, no. 3, pp. 373-382, 2011.
    [30] P. D. Rye, H. K. Høifødt, G. E. øverli, and øystein Fodstad, "Immunobead Filtration: A Novel Approach for the Isolation and Propagation of Tumor Cells," American Journal of Pathology, vol. 150, no. 1, pp. 99-106, 1997.
    [31] Ribeiro-Samy, S., Oliveira, M.I., Pereira-Veiga, T. et al., "Fast and efcient microfuidic cell flter for isolation of circulating tumor cells from unprocessed whole blood of colorectal cancer patients," Scientific Reports, vol 9, 2019.
    [32] M.-D. Zhou et al., "Separable bilayer microfiltration device for viable label-free enrichment of circulating tumour cells," Scientific reports, vol. 4, 2014.
    [33] Hyeun Joong Yoon, M. Kozminsky, and Sunitha Nagrath, "Emerging Role of Nanomaterials in Circulating Tumor Cell Isolation and Analysis," ACS Nano, vol. 8, no. 3 2014.
    [34] Cho H , Kim J , Song H , Sohn KY , Jeon M , Han KH, "Microfluidic technologies for circulating tumor cell isolation," Analyst, vol. 143, no. 15, pp. 2936-2970, 2018.
    [35] Mohamadi RM, Besant JD, Mepham A et al, "Nanoparticle-Mediated Binning and Profiling of Heterogeneous Circulating Tumor Cell Subpopulations," Angew Chem Int Ed Engl, vol. 54, no. 1, pp. 139-143, 2015.
    [36] S. Yanling, S. Yuanzhi, H. Mengjiao, W. Wei, W. Yang, C. Jie, L. Zhichao, Z. Zhi, and Y. Chaoyong, "Bioinspired Engineering of Multivalent Aptamer-Functionalized Nanointerface to Enhance Capture and Release of Circulating Tumor Cells," Angew Chem Int Ed Engl, vol. 58, no. 8, pp. 2236-2240, 2019.
    [37] Wan Y, Mahmood MA, Li N et al , "Nano-textured Substrates with Immobilized Aptamers for Cancer Cell Isolation and Cytology," Cancer, vol. 118, no. 4, pp. 1145-1154, 2012.
    [38] Dongeun Huh, G. A. Hamilton and D. E. Ingber, " From 3D cell culture to organs-on-chips," Trends in Cell Biology, vol. 21, no. 12, pp. 745-754, 2011.
    [39] Batalov I, Feinberg AW, "Differentiation of Cardiomyocytes from Human Pluripotent Stem Cells Using Monolayer Culture," Biomark Insights, vol. 10, pp. 71-76, 2015.
    [40] Alison Abbott, " Biology’s new dimension," Natures, vol. 424, pp. 870-872, 2003.
    [41] C.D. Roskelley and M.J. Bissell., "Dynamic reciprocity revisited: a continuous, bidirectional flow of information between cells and the extracellular matrix regulates mammary epithelial cell function," Biochem. Cell Biol, vol. 73, pp. 391-397, 1995
    [42] Brendon M. Baker and Christopher S. Chen, "Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues," Journal of Cell Science, vol. 125, no. 13, pp. 3015-3024, 2012.
    [43] Chen W, Weng S, Zhang F, et al., "Nanoroughened Surfaces for Efficient Capture of Circulating Tumor Cells without Using Capture Antibodies," ACS Nano, vol. 7, no. 1, pp. 566-575, 2013.
    [44] Shunqiang Wang, Yuan Wan, and Yaling Liua, "Effects of Nanopillar Array Diameter and Spacing on Cancer Cell Capture and Cell Behaviors," Nanoscale, vol. 6, no. 21, pp. 12482-12489, 2014.
    [45] X. Huang, Y. Liu, B. Yung, Y. Xiong, and X. Chen, "Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer," ACS Nano, vol. 11, no. 6, pp. 5238-5292, 2017.
    [46] M. Labib, E. H. Sargent, and S. O. Kelley, "Electrochemical methods for the analysis of clinically relevant biomolecules," Chemical reviews, vol. 116, no. 16, pp. 9001-9090, 2016.
    [47] L. Wu, E. Xiong, X. Zhang, X. Zhang, and J. Chen, "Nanomaterials as signal amplification elements in DNA-based electrochemical sensing," Nano Today, vol. 9, no. 2, pp. 197-211, 2014.
    [48] A. Chen and S. Chatterjee, "Nanomaterials based electrochemical sensors for biomedical applications," Chemical Society Reviews, vol. 42, no. 12, pp. 5425-5438, 2013.
    [49] Cui M, Song Z, Wu Y, Guo B, Fan X, Luo X, "A highly sensitive biosensor for tumor maker alpha fetoprotein based on poly(ethylene glycol) doped conducting polymer PEDOT," Biosensors and Bioelectronics, vol. 79, pp. 736-741, 2016.
    [50] Shen H, Yang J, Chen Z et al, "A novel label-free and reusable electrochemical cytosensor for highly sensitive detection and specific collection of CTCs," Biosensors and Bioelectronics, vol. 81, pp. 495-502, 2016.
    [51] Peng Y, Peng Y, Tang S et al, "PdIrBP mesoporous nanospheres combined with superconductive carbon black for the electrochemical determination and collection of circulating tumor cells," Mikrochim Acta, vol. 187, no. 4, p.216, 2020.
    [52] Yanlan Liu, Kelong Ai, and Lehui Lu, "Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields," Chem. Rev, vol. 114, no. 9, pp. 5057-5115, 2014.
    [53] Haeshin Lee, Shara M. Dellatore, William M. Miller, Phillip B. Messersmith, "Mussel-Inspired Surface Chemistry for Multifunctional Coatings," Science, vol. 318, no. 5849, pp. 426-430, 2007.
    [54] Falk Bernsmann, Vincent Ball, Frédéric Addiego, Arnaud Ponche, Marc Michel, José Joaquin de Almeida Gracio, Valérie Toniazzo, and David Ruch, "Dopamine-Melanin Film Deposition Depends on the Used Oxidant and Buffer Solution," Langmuir, vol. 27, no. 6, pp. 2819-2825, 2011.
    [55] Daniel R. Dreyer, Daniel J. Miller, Benny D. Freeman, Donald R. Paul, and Christopher W. Bielawski, "Elucidating the Structure of Poly(dopamine)," Langmuir, vol. 28, no. 15, pp. 6428-6435, 2012.
    [56] Seonki Hong, Yun Suk Na, Sunghwan Choi ,In Taek Song ,Woo Youn Kim , and Haeshin Lee, "Non-Covalent Self-Assembly and Covalent Polymerization Co-Contribute to Polydopamine Formation," Adv. Funct. Mater, vol. 22, no. 22, pp. 4711-4717, 2012.
    [57] Yanlan Liu, Kelong Ai, Jianhua Liu, Mo Deng, Yangyang He, and Lehui Lu, "Dopamine-Melanin Colloidal Nanospheres: An Efficient Near-Infrared Photothermal Therapeutic Agent for In Vivo Cancer Therapy," Adv. Mater., vol. 25, no. 9, pp. 1353-1359, 2013.
    [58] Rifang Luo, Linlin Tang, Si Zhong, Zhilu Yang, Jin Wang, Yajun Weng, Qiufen Tu, Chongxi Jiang, and Nan Huang, "Elucidating the Structure of Poly(dopamine)," Langmuir, vol. 28, no. 15, pp. 6428-6435, 2012.
    [59] Sook Hee Ku, Jungki Ryu, Seon Ki Hong, Haeshin Lee, Chan Beum Park, "General functionalization route for cell adhesion on non-wetting surfaces," Biomaterials, vol. 31, no. 9, pp. 2535-2541, 2010.
    [60] Sook Hee Ku, Chan Beum Park, "Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering," Biomaterials, vol. 31, no. 36, pp. 9431-9437, 2010.
    [61] U. Lungwitz, M. Breunig, T. Blunk, A. Gopferich, "Polyethylenimine-based non-viral gene delivery systems," Biomaterials, vol. 60, no. 2, pp. 247-266, 2005.
    [62] Park SC, Nam JP, Kim YM, Kim JH, Nah JW, Jang MK, "Branched polyethylenimine-grafted-carboxymethyl chitosan copolymer enhances the delivery of pDNA or siRNA in vitro and in vivo," Int J Nanomedicine, vol. 8, pp. 3663-3677, 2013.
    [63] Baiqing Yuan, Chunying Xu, Lin Liu, Yunfeng Shi, Sujuan Li, Renchun Zhang, Daojun Zhang, "Polyethylenimine-bridged graphene oxide–gold film on glassy carbon electrode and its electrocatalytic activity toward nitrite and hydrogen peroxide," Sensors and Actuators B, vol. 198, pp. 55-61, 2014.
    [64] Jing Wang, Junyong Zhu, Misgina Tilahun Tsehaye, Jian Li, Guanying Dong, Shushan Yuan, Xin Li, Yatao Zhang, Jindun Liua and Bart Van der Bruggen, "High flux electroneutral loose nanofiltration membranes based on rapid deposition of polydopamine/polyethyleneimine," J. Mater. Chem. A, vol. 5, no. 28, pp. 14847-14857, 2017.
    [65] Hao-Cheng Yang, Ming-Bang Wu, Yong-Jiu Li, Yi-Fu Chen, Ling-Shu Wan, Zhi-Kang Xu, "Effects of polyethyleneimine molecular weight and proportion on the membrane hydrophilization by codepositing with dopamine," J. APPL. POLYM. SCI, vol. 133, no. 32, 2016.
    [66] Alexey I. Pravdyuk, Yuri A. Petrenko, Barry J. Fuller , Alexander Y. Petrenko, " Cryopreservation of alginate encapsulated mesenchymal stromal cells," Cryobiology, vol. 66, pp. 215-222, 2013.
    [67] Maryam Farokhi, Farinaz Jonidi Shariatzadeh, Atefeh Solouk & Hamid Mirzadeh, "Alginate Based Scaffolds for Cartilage Tissue Engineering: A Review," International Journal of Polymeric Materials, vol. 69, no. 4, pp. 230-247, 2018.
    [68] J. Venkatesana, I. Bhatnagar, P. Manivasagana, Kyong-Hwa Kanga, Se-Kwon Kima,, "Alginate composites for bone tissue engineering: A review," International Journal of Biological Macromolecules, vol. 72, pp. 269-281, 2015.
    [69] Shinji Sakai, Koei Kawakami, "Synthesis and characterization of both ionically and enzymatically cross-linkable alginate," Acta Biomaterialia, vol. 3, pp. 495-501, 2007.
    [70] Joshy K.S, Susan M. Alex, Snigdha S., Nandakumar Kalarikkal, Laly A. Pothene, Sabu Thomas, "Encapsulation of zidovudine in PF-68 coated alginate conjugate nanoparticles for anti-HIV drug delivery," International Journal of Biological Macromolecules, vol. 107, pp. 929-937, 2018.
    [71] F. Rusmini, Z. Zhong, and J. Feijen, "Protein immobilization strategies for protein biochips," Biomacromolecules, vol. 8, no. 6, pp. 1775-1789, 2007.
    [72] G. T. Hermanson, Bioconjugate techniques. Academic press, 2013.
    [73] Jacob Bart, Roald Tiggelaar, Menglong Yang, Stefan Schlautmann, Han Zuilhofb and Han Gardeniers, "Room-temperature intermediate layer bonding for microfluidic devices," Lab on a Chip, vol. 9, pp. 3481-3488, 2009.
    [74] P. Ye, Z.-K. Xu, J. Wu, C. Innocent, and P. Seta, "Nanofibrous membranes containing reactive groups: electrospinning from poly (acrylonitrile-co-maleic acid) for lipase immobilization," Macromolecules, vol. 39, no. 3, pp. 1041-1045, 2006.
    [75] Sho Hideshimaa, Ryosuke Sato, Sayaka Inoue, Shigeki Kuroiwa, Tetsuya Osaka, "Detection of tumor marker in blood serum using antibody-modified field effect transistor with optimized BSA blocking," Sensors and Actuators B, vol. 161, pp. 146-150, 2012.
    [76] Xinyi Hu, Juanhua Tian, Chen Li, Hao Su, Rongrong Qin, Yifan Wang, Xin Cao, and Peng Yang, "Amyloid-Like Protein Aggregates: A New Class of Bioinspired Materials Merging an Interfacial Anchor with Antifouling," Adv. Mater., vol. 32, no. 23, 2020.

    無法下載圖示 全文公開日期 2025/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE