簡易檢索 / 詳目顯示

研究生: 江冠廷
KUAN-TING CHIANG
論文名稱: 以修飾離子交換法合成CuFeO2光觸媒及其在可見光驅動水分解產氫之應用
CuFeO2 photocatalysts prepared by modified ion exchange method and its applications on hydrogen generation via visible-light-driven water splitting
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
口試委員: 周澤川
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 137
中文關鍵詞: 光觸媒可見光離子交換亞銅鐵氧化物雙光子光觸媒
外文關鍵詞: ion exchanging
相關次數: 點閱:224下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

CuFeO¬2光觸媒能帶間隙為1.34 eV,其可利用光源幾乎涵蓋整個太陽光譜,被認為是極具潛力做為太陽能轉換的觸媒。文獻中指出CuFeO2在高溫下之合成,顯著地受煅燒氣氛所影響,不易獲得純相之CuFeO2產物。本研究先以Na[EDTA-Fe].3H2O作為前驅物,經熱分解而合成α-NaFeO2;再將已製備之α-NaFeO2,在相對低溫下,進行Na+-Cu+離子交換反應,藉此合成具有高比表面積之CuFeO2光觸媒。並藉由X-ray光繞射分析、穿透式電子顯微鏡、可見光-近紅外光漫反射及光激發螢光光譜射光譜,進行晶格結構、晶粒大小、能帶間隙、光吸收及電子電洞再結合特性之鑑定,而探討材料特性對CuFeO¬2光觸媒活性及產氫之影響。最終將CuFeO¬2光觸媒應用於雙觸媒系統,進行光分解水反應。
研究結果發現,以0.5 g EDFS•3H2O作為前驅物,在1 L/min流通空氣下,經530 ℃之熱處理後,可成功地合成高結晶性之α-NaFeO2;放大產量後,3 g EDFS•3H2O作為前驅物,1 L/min流通70% O2下,經530 ℃之熱處理後,可獲得高純度之α-NaFeO2產物。以α-NaFeO2作為前驅物,在350 ℃之熔融CuCl中,經Na+-Cu+離子交換,可合成純相之CuFeO2,其燒結程度低於在500 ℃及450 ℃之熔融CuCl中合成之純相CuFeO2;在350 ℃之熔融CuCl中,以具有α-NaFeO2及β-NaFeO2的混合產物作為前驅物,經Na+-Cu+離子交換,可成功地合成具有最高的光觸媒活性之CuFeO2。
最後將CuFeO2作為水分解產氫光觸媒,與實驗室另一研究的Bi20TiO32作為水分解產氧光觸媒,兩者結合應用於雙光子光觸媒系統 (Z-scheme)。在本實驗室設計之雙槽光觸媒系統,以銅線做為雙槽反應間的電子傳導媒介,成功地分別於光陰極及光陽極槽產出氫氣與氧氣。


CuFeO2 photocatalyst has a band gap of 1.34 eV, where the light of the entire solar spectrum can almost be fully harvested. Thus, the material is considered as one photocatalyst of great potential to utilize and convert solar energy. In literature, the synthesis of CeFeO2 has to be conducted at high temperatures and it is greatly influenced by the calcination atmosphere. Consequently, it is rather difficult to obtain CuFeO2 in pure phase. In this study, weuse Na [EDTA-Fe].3H2O as the precursor to obtain α-NaFeO2 by thermal decomposition. An Na+-Cu+ ion exchange reaction is successfully employed to transform the prepared α-NaFeO2 into CuFeO2 photocatalystat a relatively low temperature. Crystal structure and size of CuFeO2 synthesized at different conditions were characterized by XRD, SEM and TEM. Optical properties of CuFeO2 were determined by visible-infrared spectrum. Trends in the carrier recombination of CuFeO2 were characterized by photoluminescence spectrum as well.
The results showed thathigh crystallinity of the α-NaFeO2 with layer-structuredcan be synthesized by 0.5 g EDFS.3H2O as the precursor under 1 L/min flow of air at 530 ℃. By studying issues associated with the scale-up of the production process, 3 g EDFS.3H2Ocan be further used to the α-NaFeO2 under 1 L/min flow of 70% O2 at 530 ℃. Furthermore, CuFeO2 can be synthesized by Na+-Cu+ ion exchanging α-NaFeO2 with the molten CuCl at 350 ℃. At this temperature, the sintering effect is less dominant than results at at 500 ℃ and 450 ℃. In fact, the highest photocatalytic activity of CuFeO2 can be successfully obtained by dissolved precursor of mixed α-NaFeO2 and β-NaFeO2.
Finally, the photocatalytic CuFeO2 has been successfully demonstrated to be capable of generating hydrogen in an aqueous methanol solution. By integrating a Bi20TiO32 as oxygen production catalyst, which is a parallel work from our laboratory, a Z-scheme water splitting system is realized through a twin reactor with copper wire as the electron transfer medium between two chambers. Hydrogen and oxygen can be successfully produced at the photocathode and photoanode chambers in such a twin reactor system, respectively.

摘要I 目錄V 圖目錄VIII 表目錄XII 第一章 緒論1 1.1前言1 1.2光電化學系統應用於太陽光能之轉換2 第二章 文獻回顧6 2.1可見光驅動光觸媒水分解之發展與瓶頸6 2.1.1 光觸媒反應原理6 2.1.2奈米光觸媒之材料開發現狀9 2.1.3可見光驅動水分解光觸媒的開發12 2.2亞銅鐵氧化物(CuFeO2)之材料性質18 2.2.1亞銅鐵氧化物之光電化學性質18 2.2.2亞銅鐵氧化物之晶格結構19 2.3以有機金屬錯化物之熱裂解法合成金屬氧化物21 2.4以離子交換法合成具層狀結構之金屬氧化物23 2.5以光沉積法合成共觸媒系統23 2.6研究動機與目的25 2.6.1離子交換法合成CuFeO2研究之瓶頸25 2.6.2以α-NaFeO2作為前驅物,經離子交換法合成CuFeO227 2.6.3以負載Pt/CuFeO2共觸媒光觸媒產氫效率的改善28 2.6.4雙槽之光觸媒反應器應用於光能之轉換28 2.7研究架構30 第三章 實驗部分31 3.1實驗儀器31 3.2實驗藥品32 3.3實驗步驟33 3.3.1以流通不同氧氣之氣氛下合成α-NaFeO233 3.3.2以α-NaFeO2作為前驅物經離子交換法合成CuFeO233 3.3.3 以在不同pH值環境下光沉積法製備Pt/CuFeO233 3.3.4以甲醇做為犧牲試劑光觸媒水分解產氫34 3.3.5交換膜前處理35 3.3.6以雙光子光觸媒水分解產氫35 3.4 材料鑑定與性質分析36 3.4.1 以熱重損失分析(TGA)進行熱穩定性測試36 3.4.2 以粉末X光繞射(XRD)鑑定晶格結構36 3.4.4 以可見光-紅外線吸收光譜(Visible-IR Absorbance)分析光觸媒之能隙值37 3.4.5 以光激發螢光光譜 (PL)分析光觸媒之激發電子再複合特性38 3.4.5 以氣相層析儀 (GC)分析光觸媒水分解之氣體成分38 3.5光觸媒活性測試38 3.5.1 單槽反應裝置38 3.5.2 雙槽反應裝置42 第四章 結果與討論45 4.1 EDFS•3H2O之熱穩定性分析45 4.2.1 流通空氣之氣氛下合成α-NaFeO248 4.2.2 EDFS•3H2O前驅物量放大效應51 4.3 α-NaFeO2在熔融氯化亞銅(CuCl)之中經離子交換對合成CuFeO2之層狀結構與其晶粒之影響57 4.3.1不同熔融熔液比例之影響57 4.3.2臨場XRD觀察α-NaFeO2離子交換製備CuFeO2之結構變化59 4.3.3氯化亞銅(CuCl)熔融溫度之影響63 4.3.4 α-NaFeO2和β-NaFeO2混合前驅物之影響65 4.4.1 掃瞄式電子顯微鏡之表面型態分析70 4.4.2 穿透式電子顯微鏡之表面型態分析78 4.5 可見光-近紅外光吸收光譜分析83 4.5.1 CuFeO2之光吸收特性83 4.5.2 Pt/CuFeO2之光吸收特性85 4.6 以光激發螢光光譜分析CuFeO2之激發電子再複合(recombination)特性87 4.6.1 氯化亞銅(CuCl)熔融溫度對α-NaFeO2經離子交換製備CuFeO2之激發電子再複合特性87 4.6.2 α-NaFeO2和β-NaFeO2混合前驅物經離子交換製備CuFeO2-mix之激發電子再複合特性88 4.6.3 Pt/CuFeO2-mix之激發電子再複合特性89 4.7 光觸媒水分解之產氫速率測試92 4.7.1 於甲醇做為犧牲試劑下水分解產氫速率測試92 4.7.2雙觸媒反應系統之水分解產氫測試99 4.8綜合討論103 4.8.1 EDFS•3H2O作為前驅物合成α-NaFeO2103 4.8.2 氯化亞銅(CuCl)熔融溫度對α-NaFeO2經離子交換製備CuFeO2104 4.8.3 α-NaFeO2和β-NaFeO2混合前驅物經離子交換製備CuFeO2-mix105 4.8.4 光沉積法製備之Pt/CuFeO2-mix106 4.8.5 表觀效率的計算與不同CuFeO2合成方法的產氫比較107 4.8.6 雙觸媒反應系統之水分解產氫測試109 第五章 結論110 第六章 未來工作112 參考文獻113

1.Kudo, A. and Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009. 38(1): p. 253-278.
2.Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972. 238(5358): p. 37-38.
3.Gratzel, M., Photoelectrochemical cells. Nature, 2001. 414(6861): p. 338-344.
4.Licht, S., Multiple band gap semiconductor/electrolyte solar energy conversion. Journal of Physical Chemistry B, 2001. 105(27): p. 6281-6294.
5.Kudo, A., Photocatalyst materials for water splitting. Catalysis Surveys from Asia, 2003. 7(1): p. 31-38.
6.Ikeda, S., A. Tanaka, K. Shinohara, M. Hara, J.N. Kondo, K.-i. Maruya, and K. Domen, Effect of the particle size for photocatalytic decomposition of water on Ni-loaded K4Nb6O17. Microporous Materials, 1997. 9: p. 253-258.
7.Shangguan, W. and A. Yoshida, Influence of catalyst structure and modification on the photocatalytic production of hydrogen from water on mixed metal oxide. International Journal of Hydrogen Energy, 1999. 24: p. 425-431.
8.Frank, S.N. and A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. Journal of Physical Chemistry, 1977. 81(15): p. 1484-1488.
9.李曉平,徐寶琨,劉國範等, 功能材料. 1999. 30: p. 242~245.
10.周祖飛,蔣偉川,劉維屏, 環境科學. 1997. 18: p. 35~37.
11.孫奉玉,吳鳴,李文釧等, 催化學報. 1998. 19: p. 121~124.
12.陳士夫,趙夢月,陶耀武等, 環境科學. 1996. 17: p. 33~35.
13.陳耀武,趙孟月,陳士夫等, 催化學報. 1997. 18: p. 345~347.
14.Ken-ichi Okamoto, Y.Y., Hiroki Tanaka, Masashi Tanaka and Akira Itaya, Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder. Bulletin of the Chemical Society of Japan 1985. 58: p. 2015-2022.
15.Zhang Q H, G.L., Guo J K, Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl. Catal. B: Environ, 2000. 26: p. 207~215.
16.Trudeau, M.L. and J.Y. Ying, Nanocrystalline materials in catalysis and electrocatalysis: Structure tailoring and surface reactivity. Nanostructured Materials, 1996. 7(1-2): p. 245-258.
17.Anpo, M., N. Aikawa, S. Kodama and Y. Kubokawa, Photocatalytic hydrogenation of alkynes and alkenes with water over TiO2. Hydrogenation accompanied by bond fission. Journal of Physical Chemistry, 1984. 88(12): p. 2569-2572.
18.M. Walden, X.L.a.D.W., Onset of catalytic Activity of Gold Clustania on Titania with the Appearance of Normetallic Properties. Science, 1998. 281: p. 1647~1650.
19.高濂,鄭珊,張青紅, 奈米光觸媒 Nano-Photocatalyst. 2004. 1: p. 18~21.
20.Liu, M., W. You, Z. Lei, G. Zhou, J. Yang, G. Wu, G. Ma, G. Luan, T. Takata, M. Hara, K. Domen, and C. Li, Water reduction and oxidation on Pt-Ru/Y2Ta2O5N2 catalyst under visible light irradiation. Chemical Communications, 2004. 10(19): p. 2192-2193.
21.Hara, M., J. Nunoshige, T. Takata, J.N. Kondo and K. Domen, Unusual enhancement of H2 evolution by Ru on TaON photocatalyst under visible light irradiation. Chemical Communications, 2003. 9(24): p. 3000-3001.
22.Kasahara, A., K. Nukumizu, G. Hitoki, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, and K. Domen, Photoreactions on LaTiO2N under visible light irradiation. Journal of Physical Chemistry A, 2002. 106(29): p. 6750-6753.
23.Sasaki, Y., H. Nemoto, K. Saito and A. Kudo, Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. Journal of Physical Chemistry C, 2009. 113(40): p. 17536-17542.
24.[[[http://www.uvi.edu/SandM/Physics/SCI100/Downloads/SCI100MeteorologyLectures/SCI100MeteorContents.html, 2011.
25.Maeda, K. and K. Domen, New non-oxide photocatalysts designed for overall water splitting under visible light. Journal of Physical Chemistry C, 2007. 111(22): p. 7851-7861.
26.Abe, R., T. Takata, H. Sugihara and K. Domen, Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3-/I - shuttle redox mediator. Chemical Communications, 2005(30): p. 3829-3831.
27.Higashi, M., R. Abe, K. Teramura, T. Takata, B. Ohtani and K. Domen, Two step water splitting into H2 and O2 under visible light by ATaO2N (A = Ca, Sr, Ba) and WO3 with IO3-/ I- shuttle redox mediator. Chemical Physics Letters, 2008. 452(1-3): p. 120-123.
28.Kato, H., M. Hori, R. Konta, Y. Shimodaira and A. Kudo, Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chemistry Letters, 2004. 33(10): p. 1348-1349.
29.Younsi, M., A. Aider, A. Bouguelia and M. Trari, Visible light-induced hydrogen over CuFeO2 via S 2O32- oxidation. Solar Energy, 2005. 78(5): p. 574-580.
30.Omeiri, S., Y. Gabes, A. Bouguelia and M. Trari, Photoelectrochemical characterization of the delafossite CuFeO2: Application to removal of divalent metals ions. Journal of Electroanalytical Chemistry, 2008. 614(1-2): p. 31-40.
31.Shannon, R.D., D.B. Rogers and C.T. Prewitt, Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds. Inorganic Chemistry, 1971. 10(4): p. 713-718.
32.Shannon, R.D. and P.S. Gumerman, Effect of covalence on interatomic distances in Cu+, Ag+, Tl+ and Pb2+ halides and chalcogenides. Journal of Inorganic and Nuclear Chemistry, 1976. 38(4): p. 699-703.
33.Lalanne, M., A. Barnabe, F. Mathieu and P. Tailhades, Synthesis and thermostructural studies of a CuFe1-xCr xO2 delafossite solid solution with 0 ≤ × ≤ 1. Inorganic Chemistry, 2009. 48(13): p. 6065-6071.
34.Zhao, T.r., M. Hasegawa and H. Takei, Growth and characterization of CuFeO2 single crystals. Journal of Crystal Growth, 1995. 154(3-4): p. 322-328.
35.Zhao, T.R., M. Hasegawa, M. Koike and H. Takei, Crystal growth of CuFeO2 by the floating-zone method. Journal of Crystal Growth, 1995. 148(1-2): p. 189-192.
36.Zhao, T.R., M. Hasegawa and H. Takei, Phase equilibrium of the Cu-Fe-O system under Ar, CO2 and Ar+0.5% O2 atmospheres during CuFeO2 single-crystal growth. Journal of Materials Science, 1996. 31(21): p. 5657-5663.
37.Zhao, T.R., M. Hasegawa and H. Takei, Crystal growth and characterization of cuprous ferrite (CuFeO2). Journal of Crystal Growth, 1996. 166(1-4): p. 408-413.
38.Mugnier, E., A. Barnabe and P. Tailhades, Synthesis and characterization of CuFeO2+δ delafossite powders. Solid State Ionics, 2006. 177(5-6): p. 607-612.
39.Kakihana, M., M.M. Milanova, M. Arima, T. Okubo, M. Yashima and M. Yoshimura, Polymerized complex route to synthesis of pure Y2Ti2O7 at 750°C using yttrium-titanium mixed-metal citric acid complex. Journal of the American Ceramic Society, 1996. 79(6): p. 1673-1676.
40.Arima, M., M. Kakihana, Y. Nakamura, M. Yashima and M. Yoshimura, Polymerized complex route to barium titanate powders using barium-titanium mixed-metal citric acid complex. Journal of the American Ceramic Society, 1996. 79(11): p. 2847-2856.
41.Kakihana, M., T. Okubo, M. Arima, Y. Nakamura, M. Yashima and M. Yoshimura, Polymerized complex route to the synthesis of pure SrTiO3 at reduced temperatures: Implication for formation of Sr-Ti heterometallic citric acid complex. Journal of Sol-Gel Science and Technology, 1998. 12(2): p. 95-109.
42.Roy, S., W. Sigmund and F. Aldinger, Nanostructured yttria powders via gel combustion. Journal of Materials Research, 1999. 14(4): p. 1524-1531.
43.Hyeon, T., Y. Chung, J. Park, S.S. Lee, Y.W. Kim and B.H. Park, Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals. Journal of Physical Chemistry B, 2002. 106(27): p. 6831-6833.
44.Marinescu, G., L. Patron, O. Carp, L. Diamandescu, N. Stanica, A. Meghea, M. Brezeanu, J.C. Grenier, and J. Etournea, Polynuclear coordination compounds as precursors for CuFe2O4. Journal of Materials Chemistry, 2002. 12(12): p. 3458-3462.
45.Shirane, T., R. Kanno, Y. Kawamoto, Y. Takeda, M. Takano, T. Kamiyama, and F. Izumi, Structure and physical properties of lithium iron oxide, LiFeO2, synthesized by ionic exchange reaction. Solid State Ionics, 1995. 79(C): p. 227-233.
46.Sandonnini, C., Phase Diagrams for Ceramists. Gazz. Chim. Ital., 1914. 441: p. 323.
47.http://www.newport.com/, 2011.
48.Szilagyi, P.A., J. Madarasz, E. Kuzmann, A. Vertes, G. Molnar, A. Bousseksou, V.K. Sharma, and Z. Homonnay, Thermal stability of the FeIIIEDTA complex in its monomeric form. Thermochimica Acta, 2008. 479(1-2): p. 53-58.
49.Coker, V.S., A.M.T. Bell, C.I. Pearce, R.A.D. Pattrick, G. van der Laan and J.R. Lloyd, Time-resolved synchrotron powder X-ray diffraction study of magnetite formation by the Fe(III)-reducing bacterium Geobacter sulfurreducens. American Mineralogist, 2008. 93: p. 540-547.
50.McQueen, T., Q. Huang, J.W. Lynn, R.F. Berger, T. Klimczuk, B.G. Ueland, P. Schiffer, and R.J. Cava, Magnetic structure and properties of the S=5 2 triangular antiferromagnet α-NaFe O2. Physical Review B - Condensed Matter and Materials Physics, 2007. 76(2).
51.El Ataoui, K., J.P. Doumerc, A. Ammar, P. Gravereau, L. Fournes, A. Wattiaux, and M. Pouchard, Preparation, structural characterization and mossbauer study of the CuFe1-xVxO2 (0 ≤ x ≤ 0.67) delafossite-type solid solution. Solid State Sciences, 2003. 5(9): p. 1239-1245.
52.West, A.R., NaAlO2 and NaFeO2 Polymorphism. Nature, 1974. 249(5454): p. 245-246.
53.Lee, C., X. Wei, J.W. Kysar and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321(5887): p. 385-388.
54.Nair, R.R., P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A.K. Geim, Fine structure constant defines visual transparency of graphene. Science, 2008. 320(5881): p. 1308.
55.洪偉修, 世界上最薄的材料--石墨烯. 98康熹化學報報, 2009.
56.Derbal, A., S. Omeiri, A. Bouguelia and M. Trari, Characterization of new heterosystem CuFeO2/SnO2 application to visible-light induced hydrogen evolution. International Journal of Hydrogen Energy, 2008. 33(16): p. 4274-4282.

無法下載圖示 全文公開日期 2016/08/01 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE