簡易檢索 / 詳目顯示

研究生: 賴郁淳
Yu-Chun Lai
論文名稱: 具潛在光電性質之環苯雙烯衍生物及其高分子之合成與鑑定
Synthesis and Characterization of Cyclophanediene Derivatives and Their Polymers for Potential Uses in Optoelectronics
指導教授: 游進陽
Chin-Yang Yu
口試委員: 陳志堅
Jyh-Chien Chen
堀江正樹
Masaki Horie
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 109
中文關鍵詞: 環苯雙烯四苯乙烯聚集誘導發光開環歧化聚合聚對苯乙烯
外文關鍵詞: [2.2]paracyclophane-1,9-diene, tetraphenylethylene, aggregation-induced emission, ring-opening metathesis polymerization, poly(p-phenylene vinylene)s
相關次數: 點閱:421下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在眾多共軛高分子中,聚對苯乙烯(poly(p-phenylene vinylene)s)吸引了很大部分的關注與研究,良好的光電性質讓聚對苯乙烯衍生物們成為光電元件材料的熱門選擇,然而,受到聚集螢光淬滅效應(Aggregation-caused quenching)的影響,聚對苯乙烯衍生物的螢光在固體時會大幅下降進而限制了應用上的發展;相反地,四苯乙烯為一個具有良好聚集誘導發光(Aggregation-induced emission)性質的分子,換句話說,它在聚集態時會發出強烈的螢光。我們希望經由導入四苯乙烯分子成為高分子的支鏈來改善聚對苯乙烯衍生物的聚集螢光淬滅效應。
本研究成功合成單一聚苯乙烯取代之環苯雙烯,再利用釕系催化劑進行開環歧化聚合反應得到我們預先設想的擁有四苯乙烯取代之聚對苯乙烯。單一聚苯乙烯取代之環苯雙烯與其高分子都進行了光學性質、熱性質的測定,另外高分子也進行電化學性質的檢測並呈現於本論文中。


Poly (p-phenylene vinylene) derivatives have been attracted tremendous studies among conjugated polymers. The favorable optoelectronic properties make PPVs a popular choice in organic electronic devices. However, the poor emission in solid-state, known as aggregation-caused quenching (ACQ), block the further applications of PPVs. On the contrast, tetraphenylethylene (TPE) is an AIE, i.e. aggregation-induced emission, active molecule, which displays highly emission in aggregation state. We expected the introduction of TPE as side groups can improve the ACQ problem.
Here in, TPE-substituted [2.2]paracyclophane-1,9-diene, as a target monomer, has been synthesized and characterized. Followed by ring-opening metathesis polymerization (ROMP) with ruthenium-based catalyst, the expecting tetraphenylethylene substituted PPV can be obtained. Both monomer and polymers showed high fluorescence in solid state. The molecular weights, optical, thermal and electrochemical properties of polymers were investigated and reported in this thesis.

Abstract I List of content II Chapter 1. Introdution and Aims 1 1.1 Conjugated polymer 2 1.2 Synthesis of PPV 3 1.2.1 Precursor routes to PPVs 3 1.2.2 Direct routes to PPVs 6 1.3 Ring-opening metathesis polymerization (ROMP) 7 1.3.1 Catalysts for ROMP 9 1.3.2 Poly(p-phenylene vinylene)s through ROMP 10 1.4 Aggregation-induced emission (AIE) 12 1.4.1 Mechanistic discussion 14 1.4.2 Introduction to tetraphenylethylene 16 1.5 Aims of the project 16 1.6 References 17 Chapter 2. Previous Studies of Bromo-Substituted Paracyclophanedienes 20 2.1 Introduction 21 2.2 Synthesis and characterization of pseudo-dibromo substituted [2.2]paracyclophane-1,9-diene 22 2.3 Synthesis and characterization of dibromo substituted [2.2]paracyclophane-1,9-diene 30 2.4 Experimental 35 2.4.1 Synthesis 36 2.4.1.1 Synthesis of 2-bromo-1,4-dimethylbenzene (1) 36 2.4.1.2 Synthesis of 1-bromo-2,5-bis(bromomethyl)benzene (2) 36 2.4.1.3 Synthesis of 1-bromo-2,5-bis(thiolatomethyl)benzene (3) 37 2.4.1.4 Synthesis of 6,14-dibromo-2,11-dithia[3.3]paracyclophane, 6,15-dibromo-2,11-dithia[3.3]paracyclophane, 5,18-dibromo-2,11-dithia[3.3]paracyclophane, and 5,17-dibromo-2,11-dithia[3.3]paracyclophane (4) 37 2.4.1.5 Synthesis of bis(sulfide) compounds (5) 38 2.4.1.6 Synthesis of bis(sulfoxide) compounds (6) 38 2.4.1.7 Synthesis of 5,12-dibromo-[2.2]paracyclophane-1,9-diene (7a), 5,13-dibromo-[2.2]paracyclophane-1,9-diene (7b), 4,16-dibromo-[2.2]paracyclophane-1,9-diene (7c), 4,15-dibromo-[2.2]paracyclophane-1,9-diene (7d) 38 2.4.1.8 Synthesis of 1,4-dibromo-2,5-dimethylbenzene (8) 39 2.4.1.9 Synthesis of 1,4-dbromo-2,5-bis(bromomethyl)benzene (9) 39 2.4.1.10 Synthesis of 1,4-bis(bromomethyl)benzene (10) 40 2.4.1.11 Synthesis of 1,4-bis(thiolatomethyl)benzene (11) 40 2.4.1.12 Synthesis of 5,8-dibromo-2,11-dithia[3.3]paracyclophane (12) 41 2.1.1.13 Synthesis of bis(sulfide) compounds (13) 41 2.4.1.14 Synthesis of bis(sulfoxide) compounds (14) 41 2.4.1.15 Synthesis of 4,7-dibromo-[2.2]paracyclophane-1,9-diene (15) 42 2.5 Summary 42 2.6 References 43 Chapter 3. Synthesis and Characterization of Monomer – TPE Substituted [2.2]Paracyclophane-1,9-diene 44 3.1 Introduction 45 3.2 Results and discussion 46 3.2.1 Optical properties 54 3.2.2 Thermal properties 57 3.3 Experimental 57 3.3.1 Synthesis 58 3.3.1.1 Synthesis of 5-bromo-2,11-dithia[3.3]paracyclophane (16) 58 3.3.1.2 Synthesis of bis(sulfide) compounds (17) 59 3.3.1.3 Synthesis of bis(sulfoxide) compounds (18) 59 3.3.1.4 Synthesis of 4-bromo-[2.2]paracyclophane-1,9-diene (19) 60 3.3.1.5 Synthesis of 4-(4-(1,2,2-triphenylvinyl)phenyl)-[2.2]paracyclophane-1,9-diene (20) 60 3.4 Summary 61 3.5 References 62 Chapter 4. Preparation and Characterization of Phenylenevinylene Homopolymers via ROMP 63 4.1 Introduction 64 4.2 Results and Discussion 66 4.2.1 Molecular weight and structure characterization 67 4.2.2 Optical properties 68 4.2.3 Thermal properties 74 4.2.4 Electrochemical properties 74 4.3 Experimental 76 4.3.1 Synthesis 76 4.3.1.1 Synthesis of poly (p-phenylenevinylene-2-(4-(1,2,2-triphenylvinyl)phenyl)-p-phenylenevinylene)s (P1-P3) 76 4.4 Summary 77 4.5 References 77 Chapter 5. Conclusion 79 Appendix 81 1H, 13C, and COSY NMR spectra 82 Mass spectroscopy 91 Crystal data and structure refinement 101

Chapter 1
[1] H. Shirakawa, J.Louis, A. G. Macdiarmid, J. C. S. Chem. Comm 1977, 578–580.
[2] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539–541.
[3] A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz, A. B. Holmes, Chem. Rev. 2009, 897–1091.
[4] H. G. Gilch, W. L. Wheelwright, J. Polym. Sci. Part A - Polym. Chem. 1966, 4, 1337–1349.
[5] T.Schwalm, M.Rehahn, Macromol. Rapid Commun. 2008, 29, 33–38.
[6] H. Roex, P. Adriaensens, D. Vanderzande, J. Gelan, Macromolecules. 2003, 36, 5613–5622.
[7] R. A. Wessling, J. Polym. Sci. Polym. Symp. 1985, 72, 55–66.
[8] J. Gmeiner, S. Karg, M. Meier, W. Rieß, P. Strohriegl, M. Schwoerer, Acta Polym. 1993, 44, 201–205.
[9] R. W. Lenz, C. C. Han, J. S. Smith, F. E. Karasz, J. Polym. Sci. Part A Polym. Chem. 1988, 26, 3241–3249.
[10] F. R. Denton III, A. Sarker, P. M. Lahti, R. O. Garay, F. E. Karasz, J. Polym. Sci., Part A: Polym. Chem. 1992, 30, 2233–2240.
[11] R. O. Garay, U. Baier, C. Bubeck, K. MüllenK, Adv. Mater. 1993, 5, 561–564.
[12] R. N. McDonald, T. W. Campbell, J. Am. Chem. Soc. 1960, 82, 4669–4671.
[13] F. Bubudri, S. R. Cicco, G. M. Farinola, F. Naso, U. Bari, A. Bolognesi, W. Porzio, 1996, 911, 905–911.
[14] M. Grigoras, N. C. Antonoaia, Polym. Int. 2005, 54, 1641–1646.
[15] C. Y. Yu, M. L. Turner, Angew. Chemie - Int. Ed. 2006, 45, 7797–7800.
[16] A. M. Spring, C. Y. Yu, M. Horie, M. L. Turner, Chem. Commun. 2009, 0, 2676–2678.
[17] W. J. Feast, J. Tsibouklis, K. L. Pouwer, L. Groenendaal, E. W. Meijer, Polymer. 1996, 37, 5017–5047.
[18] Y. Miao, G. Bazan, J. Am. Chem. Soc. 1994, 9379–9380.
[19] M. Schimetta, F. Stelzer, Macromolecules 1994, 3769–3772.
[20] V. D. Z̆. S̆krbić, Polymer. 1996, 37, 505–507.
[21] V. P. Conticello, D. L. Gin, R. H. Grubbs, J. Am. Chem. Soc. 1992, 114, 9708–9710.
[22] M. Weck, P. Schwab, R. H. Grubbs, Macromolecules 1996, 29, 1789–1793.
[23] B. R. Maughon, R. H. Grubbs, Macromolecules 1997, 30, 3459–3469.
[24] D. M. Lynn, S. Kanaoka, R. H. Grubbs, J. Am. Chem. Soc. 1996, 118, 784–790.
[25] C. W. Bielawski, R. H. Grubbs, Angew. Chemie - Int. Ed. 2000, 39, 2903–2906.
[26] J. A. Love, J. P. Morgan, T. M. Trnka, R. H. Grubbs, Angew. Chemie - Int. Ed. 2002, 41, 4035–4037.
[27] S. Son, A. Dodabalapur, A. J. Lovinger, M. E. Galvin, Science 1995, 269, 376–378.
[28] Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361–5388.
[29] J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 381, 1740–1741.
[30] J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu, B. Z. Tang, Chem. Mater. 2003, 15, 1535–1546.
[31] S. Li, Q. Wang, Y. Qian, S. Wang, Y. Li, G. Yang, J. Phys. Chem. A 2007, 111, 11793–11800.
[32] X. Fan, J. Sun, F. Wang, Z. Chu, P. Wang, Y. Dong, R. Hu, B. Z. Tang, D. Zou, Chem. Commun. 2008, 381, 2989–2991.
[33] N. L. C. Leung, N. Xie, W. Yuan, Y. Liu, Q. Wu, Q. Peng, Q. Miao, J. W. Y. Lam, B. Z. Tang, Chem. - Eur. J. 2014, 20, 15349–15353.
[34] H. Wang, E. Zhao, J. W. Y. Lam, B. Z. Tang, Mater. Today 2015, 18, 365–377.
[35] Z. Zhao, J. W. Y. Lam, B. Z. Tang, Curr. Org. Chem. 2010, 14, 2109–2132.
[36] W. Dong, T. Fei, A. P. Cando, U. Scherf, Polym. Chem. 2014, 5, 4048–4053.

Chapter 2
[1] C. J. Brown, A. C. Farthing, Nature 1949, 164, 915–916.
[2] D. J. Cram, J. M. Cram, Acc. Chem. Res. 1971, 4, 204–213.
[3] D. J. Cram, H. Steinberg, J. Am. Chem. Soc. 1951, 73, 5691–5704.
[4] W. M. Schubert, W. A. Sweeney, H. K. Latourette, J. Am. Chem. Soc. 1954, 76, 5462–5466
[5] A. E. Study, A. DeMeijere, S. I. Kozhushkov, K. Rauch, H. Schill, S. P. Verevkin, M. Ku, H. Beckhaus, C. Ru, D. S. Yufit, J. Am. Chem. Soc. 2003, 125, 15110–15113.
[6] C. Y. Yu, M. L. Turner, Angew. Chemie - Int. Ed. 2006, 45, 7797–7800.
[7] A. M. Spring, C. Y. Yu, M. Horie, M. L. Turner, Chem. Commun. 2009, 2676–2678.
[8] F. Menk, M. Mondeshki, D. Dudenko, S. Shin, D. Schollmeyer, O. Ceyhun, T. L. Choi, R. Zentel, Macromolecules 2015, 48, 7435–7445.
[9] F. Wudl, P. M. Allemand, G. Srdanov, Z. Ni, D. McBranch, ACS Symp. Ser. 1991, 455, 683–686.
[10] T. Otsubo, V. Boekelheide, Tetrahedron Lett. 1975, 45, 3881–3884.
[11] Y. Himeshima, T. Sonoda, H. Kobayashi, Chem. Lett. 1983, 12, 1211–1214.
[12] A. Cobas, E. Guitián, L. Castedo, J. Org. Chem. 1997, 62, 4896–4897.

Chapter 3.
[1] Vögtle, F., J. Wiley, Cyclophane Chemistry: Synthesis, Structures, and Reactions. Chichester, 1993.
[2] H. Hopf, Angew. Chemie - Int. Ed. 2008, 47, 9808–9812.
[3] N. Ahmed, B. Shirinfar, I. S. Youn, A. Bist, V. Suresh, K. S. Kim, Chem. Commun. 2012, 48, 2662–2664.
[4] D. J. Cram, H. Steinberg, J. Am. Chem. Soc. 1951, 73, 5691–5704.
[5] C. T. Chen, Chem. Mater. 2004, 16, 4389–4400.
[6] G. Qian, Z. Zhong, M. Luo, D. Yu, Z. Zhang, Z. Y. Wang, D. Ma, Adv. Mater. 2009, 21, 111–116.
[7] J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D.Zhu, B. Z. Tang, Chem. Commun. 2001, 381, 1740–1741.
[8] L. Lin, Y. Morisaki, Y. Chujo, Int. J. Polym. Sci. 2010, 908128
[9] R. Misra, T. Jadhav, B. Dhokalea, S. M. Mobin, Chem. Commun. 2014, 50, 9076–9078
[10] A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson, R. Taylor, J. Chem. Soc., Perkin Trans. 1987, 0, S1–S83.
[11] P. I. Shih, C. Y. Chuang, C. H. Chien, E. W. G. Diau, C. F. Shu, Adv. Funct. Mater. 2007, 17, 3141–3146.
[12] D. Lo, C. H. Chang, G. Krucaite, D. Volyniuk, J. V. Grazulevicius, S. Grigalevicius, J. Mater. Chem. C 2017, 5, 6054-6060

Chapter 4.
[1] Y. Wakayama, R. Hayakawa, H. S. Seo, Sci. Technol. Adv. Mater. 2014, 15, 24202.
[2] A. Moliton, R. C. Hiorns, Polym. Int. 2004, 53, 1397–1412.
[3] M. M. Torrent, C. Rovira, Chem. Soc. Rev. 2008, 37, 827–838.
[4] V. P. Conticello, D. L. Gin, R. H. Grubbs, J. Am. Chem. Soc. 1992, 114, 9708–9710.
[5] Y. Miao, G. Bazan, J. Am. Chem. Soc. 1994, 116, 9379–9380.
[6] C. Y. Yu, M. L. Turner, Angew. Chemie - Int. Ed. 2006, 45, 7797–7800.
[7] M. Horie, I. W. Shen, S. M. Tuladhar, H. Leventis, S. A. Haque, J. Nelson, B. R. Saunders, M. L. Turner, Polymer 2010, 51, 1541–1547.
[8] D. Mäker, C. Maier, K. Brödner, U. H. F. Bunz, ACS Macro Lett. 2014, 3, 415−418.
[9] D. Mäker, U. H. F. Bunz, Macromol. Rapid Commun. 2014, 35, 2096–2100.
[10] J. M. Kim, Macromol. Rapid Commun. 2007, 28, 1191–1212.
[11] Y. Qian, S. Li, G. Zhang, Q. Wang, S. Wang, H. Xu, C. Li, Y. Li, G. Yang, J. Phys. Chem. B 2007, 111, 5861–5868.
[12] M. R. Han, Y. Hirayama, M. Hara, Chem. Mater. 2006, 18, 2784–2786.
[13] Y. Liu, C. Deng, L. Tang, A. Qin, R. Hu, J. Z. Sun, B. Z. Tang, J. Am. Chem. Soc. 2011, 133, 660–663.
[14] Y. Dong, J. W. Y. Lam, A. Qin, J. Liu, Z. Li, B. Z. Tang, J. Sun, H. S. Kwok, Appl. Phys. Lett. 2007, 91, 011111.
[15] Z. Zhao, J. W. Y. Lam, B. Z. Tang, Curr. Org. Chem. 2010, 14, 2109–2132.
[16] W. Dong, T. Fei, A. P. Cando, U. Scherf, Polym. Chem. 2014, 5, 4048–4053.
[17] J. R. Chen, J. Zhao, B. J. Xu, Z. Y. Yang, S. W. Liu, J. R. Xu, Y. Zhang, Y. C. Wu, P. Y. Lv, Z. G. Chi, Chinese J. Polym. Sci. 2017, 35, 282–292.
[18] W. Dong, Y. Pan, M. Fritsch, U. Scherf, J. Polym. Sci. Part A: Polym. Chem. 2015, 53, 1753–1761.
[19] R. Schenk, H. Gregorius, K. Müllen, Adv. Mat. 1991, 3, 492–493.

無法下載圖示 全文公開日期 2023/01/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE