簡易檢索 / 詳目顯示

研究生: 蘇家儀
Chia-Yi Su
論文名稱: 以開環歧化聚合法合成具降冰片烯衍生物及間苯乙烯的聚合物之性質與鑑定
Synthesis and Characterization of the Polymers Containing Norbornene Derivatives and m-Phenylenevinylenes by Ring-Opening Metathesis Polymerization
指導教授: 游進陽
Chin-Yang Yu
口試委員: 游進陽
Chin-Yang Yu
羅承慈
Chen-Tsyr Lo
堀江正樹
Masaki Horie
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 135
中文關鍵詞: 降冰片烯間苯乙烯開環歧化聚合四苯乙烯聚集誘導發光
外文關鍵詞: norbornene, m-phenylenevinylenes, ring-opening metathesis polymerization, tetraphenylethene, aggregation-induced emission
相關次數: 點閱:274下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討含有降冰片烯衍生物和間苯乙烯之共聚物的合成及性質與鑑定。以開環歧化聚合做為高分子聚合反應,且為了精準地控制聚合物之分子量、重複單元數以及降低其多分散性,選用能快速引發的第三代格拉布催化劑最為起始劑。通過紫外可見吸收光譜和光致發光光譜對共聚物進行分析,表明通過加入間苯乙烯,降冰片烯基共聚物的量子產率顯著提高,且具有四苯乙烯的降冰片烯基聚合物在固態和聚集狀態下表現出高螢光,證明它們具有聚集誘導發光特性。此外,無規共聚物比嵌段共聚物具有更高的量子產率。透過差示掃描量熱儀、熱重分析證明所有聚合物均表現出良好的熱穩定性,利用循環伏安法以及原子力顯微鏡對聚合物薄膜進行電化學性質和形貌之分析。


    The aim of this thesis was to synthesize the polymers containing norbornene derivatives and m-phenylenevinylenes by ring-opening metathesis polymerization (ROMP) and their characterization. In this thesis, a fast-initiation ruthenium initiator such as the 3rd generation Grubbs' initiator was chosen to control the molecular weights and narrow polydispersities of the polymers.
    By incorporating m-phenylenevinylenes, the quantum yield of norbornene-based copolymers was significantly increased to 16.7–74.5%. The polymers were analyzed by UV-Vis absorption spectroscopy and photoluminescence spectroscopy. Tetraphenylethene (TPE) or fluorinated TPE containing norbornene-based polymers exhibit high emission in the solid and aggregate states demonstrating that they have aggregation induced emission (AIE) characteristics. Additionally, random copolymers have a higher quantum yield than block copolymers. All polymers show good thermal stability with a degradation temperature (Td) of more than 450oC. The energy gaps of the polymers determined by cyclic voltammetry are between 1.77 and 2.08 eV. The morphology of the polymer thin films evaluated using AFM revealed a variety of shapes.

    Abstract II 中文摘要 III Ackonwledgements IV Table of Content V List of Figures IX List of Schemes XIII List of Tables XV Chapter 1. Introduction and Aims 1 1.1 Conjugated polymers 1 1.2 Polynorbornene 3 1.3 Aggregation-caused quenching (ACQ) 4 1.4 Aggregation-induced emission (AIE) 6 1.4.1 Restriction of intramolecular vibrations (RIV) 8 1.4.2 Restriction of intramolecular rotations (RIR) 8 1.5 Ring-opening metathesis polymerization 9 1.5.1 Overview of ROMP 9 1.5.2 Catalysts for ROMP 11 1.6 Copolymers 13 1.6.1 Block copolymers 13 1.6.2 Random copolymers 14 1.6.3 Alternating copolymers 15 1.6.4 Graft copolymers 15 1.7 Self-assembly of block copolymers 16 1.7.1 Introduction to self-assembly of block copolymers 16 1.7.2 Polymerization-induced self-assembly (PISA) 18 1.7.3 In Situ nanoparticlization of conjugated polymers 19 1.8 Aim of Project 20 Chapter 2. Synthesis and Characterization 21 2.1 General procedures 21 2.2 Synthesis and characterizations of norbornene-based monomers 22 2.3 Synthesis and characterizations of dimethoxy-1(1,3),4(1,4)-dibenzenenacyclohexaphane-2,5-diene 35 2.4 Synthesis and characterizations of polymers 41 2.4.1 Synthesis of homopolymers 41 2.4.2 Synthesis of block copolymers 44 2.4.3 Synthesis of random copolymers 45 2.4.4 Characterizations of polymers 47 Chapter 3. Properties of Polymers 58 3.1 Optical properties 58 3.2 Thermal Properties 68 3.3 Electrochemical Properties 71 3.4 Morphology 75 Chapter 4. Conclusion 79 Chapter 5. Experimental Section 80 5.1 Synthesis of monomers 80 5.1.1 Synthesis of 5-norbornene-exo-2,3-dicarboxylic anhydride (1) 80 5.1.2 Synthesis of 5-norbornene-exo-2,3- dicarboximide anhydride (2) 81 5.1.3 Synthesis of 2-(2-(2-methoxyethoxy)ethoxy)ethyl 4-methylbenzenesulfonate (3) 81 5.1.4 Synthesis of (2-(p-tolyl)ethene-1,1,2-triyl)tribenzene (4) 82 5.1.5 Synthesis of (2-(4-(bromomethyl)phenyl)ethene-1,1,2-triyl)tribenzene (5) 83 5.1.6 Synthesis of 4,4',4''-(2-(p-tolyl)ethene-1,1,2-triyl)tris(fluorobenzene) (6) 84 5.1.7 Synthesis of 4,4',4''-(2-(4-(bromomethyl)phenyl)ethene-1,1,2-triyl)tris(fluorobenzene) (7) 85 5.1.8 Synthesis of N- triethylene glycol monomethyl ether-cis-5-norbornene-exo- 2,3-dicarboxylic imid (M1) 86 5.1.9 Synthesis of 1-(4-methylenephenyl)-1,2,2-triphenylethene substituted 5-norbornene-exo-2,3-dicarboximide anhydride (M2) 87 5.1.10 Synthesis of 1-(4-methylenephenyl)-1,2,2-(4-fluorophenyl) phenylethene substituted 5-norbornene-exo-2,3-dicarboximide anhydride (M3) 88 5.1.11 Synthesis of 1,3-phenylenedimethanethiol (8) 89 5.1.12 Synthesis of 1,4-bis(bromomethyl)-2,5-dimethoxybenzene (9) 90 5.1.13 Synthesis of Dimethoxy-3,7-dithia-1(1,3),5(1,4)-dibenzenacyclooctaphane (10) 90 5.1.14 Synthesis of Dimethoxy-1(1,3),4(1,4)-dibenzenacyclohexaphane compound with methyl(phenyl)sulfane (11) 91 5.1.15 Synthesis of (Methylsulfinyl)benzene compound with 12,15-dimethoxy-1(1,3),4(1,4)-dibenzenacyclohexaphane (12) 92 5.1.16 Synthesis of Dimethoxy-1(1,3),4(1,4)-dibenzenenacyclohexaphane-2,5-diene (M4) 93 5.2 Synthesis of Polymers 94 5.2.1 Synthesis of P1 94 5.2.2 Synthesis of P2 94 5.2.3 Synthesis of P3 95 5.2.4 Synthesis of P4 95 5.2.5 Synthesis of P5 96 5.2.6 Synthesis of P6 96 5.2.7 Synthesis of P7 97 5.2.8 Synthesis of P8 97 5.2.9 Synthesis of P9 98 5.2.10 Synthesis of P10 98 Chapter 6. References 100 Appendix i AI. 13C NMR Spectrum i AII. MS Spectrum ix

    [1] N. K, C. S. Rout, Rsc Adv. 2021, 11, 5659.
    [2] S. B. Mdluli, M. E. Ramoroka, S. T. Yussuf, K. D. Modibane, V. S. John-Denk, E. I. Iwuoha, Polymers 2022, 14, 716.
    [3] M. M. Nahid, E. Gann, L. Thomsen, C. R. McNeill, Eur. Polym. J. 2016, 81, 532.
    [4] S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324.
    [5] O. Ostroverkhova, Chem. Rev. 2016, 116, 13279.
    [6] M. V. Bermeshev, P. P. Chapala, Prog. Polym. Sci. 2018, 84, 1.
    [7] S. Varlas, S. B. Lawrenson, L. A. Arkinstall, R. K. O’Reilly, J. C. Foster, Prog. Polym. Sci. 2020, 107, 101278.
    [8] R. Hoffmann, R. B. Woodward, J. Am. Chem. Soc. 2002, 87, 4388.
    [9] J. Sauer, Angew. Chem. Int. Ed. 1967, 6, 16.
    [10] M. L. Gringolts, Y. I. Denisova, G. A. Shandryuk, L. B. Krentsel, A. D. Litmanovich, E. S. Finkelshtein, Y. V. Kudryavtsev, Rsc Adv. 2015, 5, 316.
    [11] F. Blank, C. Janiak, Coord. Chem. Rev. 2009, 253, 827.
    [12] J. D. Rule, J. S. Moore, Macromolecules 2002, 35, 7878.
    [13] K.-H. Yoon, K. O. Kim, M. Schaefer, D. Y. Yoon, Polymer 2012, 53, 2290.
    [14] Z. Zhao, C. Y. K. Chan, S. Chen, C. Deng, J. W. Y. Lam, C. K. W. Jim, Y. Hong, P. Lu, Z. Chang, X. Chen, P. Lu, H. S. Kwok, H. Qiu, B. Z. Tang, J. Mater. Chem. A 2012, 22, 4527.
    [15] T. Förster, Angew. Chem. Int. Ed. 1969, 8, 333.
    [16] M. H. Chua, K. W. Shah, H. Zhou, J. Xu, Molecules 2019, 24, 2711.
    [17] J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang, B. Z. Tang, Adv. Mater. 2014, 26, 5429.
    [18] M. Gao, B. Z. Tang, ACS Sens. 2017, 2, 1382.
    [19] Y. Hong, J. W. Lam, B. Z. Tang, Chem. Comm. 2009, 4332.
    [20] Y. Dong, J. W. Y. Lam, A. Qin, J. Liu, Z. Li, B. Z. Tang, J. Sun, H. S. Kwok, Appl. Phys. Lett. 2007, 91, 011111.
    [21] M. Chen, L. Li, H. Nie, J. Tong, L. Yan, B. Xu, J. Z. Sun, W. Tian, Z. Zhao, A. Qin, B. Z. Tang, Chem. Sci. 2015, 6, 1932.
    [22] C.-K. Lim, S. Kim, I. C. Kwon, C.-H. Ahn, S. Y. Park, Chem. Mater. 2009, 21, 5819.
    [23] J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu, B. Z. Tang, Chem. Mater. 2003, 15, 1535.
    [24] Y. Zang, Y. Li, B. Li, H. Li, Y. Yang, Rsc Adv. 2015, 5, 38690.
    [25] S. Riebe, C. Vallet, F. Van Der Vight, D. Gonzalez-Abradelo, C. Wölper, C. A. Strassert, G. Jansen, S. Knauer, J. Voskuhl, Chem. Eur. J. 2017, 23, 13660.
    [26] K. Li, Y. Lin, C. Lu, Chem. Asian J. 2019, 14, 715.
    [27] J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, B. Z. Tang, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, Chem. Commun. 2001, 1740.
    [28] R. Zhang, X. Huang, C. Chen, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Mater. Sci. Eng. R Rep. 2021, 146.
    [29] T. P. M. Goumans, A. W. Ehlers, K. Lammertsma, Organometallics 2005, 24, 3200.
    [30] C. W. Bielawski, R. H. Grubbs, Prog. Polym. Sci. 2007, 32, 1.
    [31] J. Suriboot, H. Bazzi, D. Bergbreiter, Polymers 2016, 8, 140.
    [32] H.-K. Lee, T.-L. Choi, ACS Macro Lett. 2018, 7, 531.
    [33] C. W. Bielawski, R. H. Grubbs, Angew. Chem. Int. Ed. 2000, 39, 2903.
    [34] A. Leitgeb, J. Wappel, C. Slugovc, Polymer 2010, 51, 2927.
    [35] S. Sutthasupa, M. Shiotsuki, F. Sanda, Polym J. 2010, 42, 905.
    [36] D. J. Walsh, S. H. Lau, M. G. Hyatt, D. Guironnet, J. Am. Chem. Soc. 2017, 139, 13644.
    [37] P. Samaddar, A. Deep, K.-H. Kim, Chem. Eng. J. 2018, 342, 71.
    [38] W. Zheng, Z.-G. Wang, Macromolecules 1995, 28, 7215.
    [39] S. Wu, C. Bubeck, Macromolecules 2013, 46, 3512.
    [40] W. Hu, V. B. F. Mathot, R. G. Alamo, H. Gao, X. Chen, "Crystallization of Statistical Copolymers", Springer International Publishing, 2016, p. 1.
    [41] L. Li, K. Raghupathi, C. Song, P. Prasad, S. Thayumanavan, Chem. Commun. 2014, 50, 13417.
    [42] J. Huang, S. R. Turner, Polymer 2017, 116, 572.
    [43] K. Nishimori, M. Ouchi, Chem. Commun. 2020, 56, 3473.
    [44] A. Bhattacharya, Prog. Polym. Sci. 2004, 29, 767.
    [45] W. Wang, W. Wang, H. Li, X. Lu, J. Chen, N.-G. Kang, Q. Zhang, J. Mays, Ind. Eng. Chem. Res. 2015, 54, 1292.
    [46] S. Creutz, J. van Stam, F. C. De Schryver, R. Jérôme, Macromolecules 1998, 31, 681.
    [47] H. Shinoda, P. J. Miller, K. Matyjaszewski, Macromolecules 2001, 34, 3186.
    [48] J. K. Kim, S. Y. Yang, Y. Lee, Y. Kim, Prog. Polym. Sci. 2010, 35, 1325.
    [49] W.-N. He, J.-T. Xu, Prog. Polym. Sci. 2012, 37, 1350.
    [50] T. N. Hoheisel, K. Hur, U. B. Wiesner, Prog. Polym. Sci. 2015, 40, 3.
    [51] G. I. Peterson, S. Yang, T.-L. Choi, Polym. Chem. 2021, 12, 1393.
    [52] Y. Sha, M. A. Rahman, T. Zhu, Y. Cha, C. W. McAlister, C. Tang, Chem. Sci. 2019, 10, 9782.
    [53] M. J. Derry, L. A. Fielding, S. P. Armes, Prog. Polym. Sci. 2016, 52, 1.
    [54] J. Wan, B. Fan, S. H. Thang, Chem. Sci. 2022, 13, 4192.
    [55] S. Sahoo, Y. D. Gordievskaya, K. Bauri, A. A. Gavrilov, E. Y. Kramarenko, P. De, Macromolecules 2022, 55, 1139.
    [56] S. L. Canning, G. N. Smith, S. P. Armes, Macromolecules 2016, 49, 1985.
    [57] S. Shin, K.-Y. Yoon, T.-L. Choi, Macromolecules 2015, 48, 1390.
    [58] I.-H. Lee, P. Amaladass, I. Choi, V. W. Bergmann, S. A. L. Weber, T.-L. Choi, Polym. Chem. 2016, 7, 1422.
    [59] V. Lapinte, J.-C. Brosse, L. Fontaine, Macromol. Chem. Phys. 2004, 205, 824.
    [60] M. Banerjee, S. J. Emond, S. V. Lindeman, R. Rathore, J. Org. Chem. 2007, 72, 8054.
    [61] M. Ephritikhine, Chem. Commun. 1998, 2549.
    [62] H. Zhang, Y. Nie, J. Miao, D. Zhang, Y. Li, G. Liu, G. Sun, X. Jiang, J. Mater. Chem. C 2019, 7, 3306.
    [63] M. P. Aldred, C. Li, G.-F. Zhang, W.-L. Gong, A. D. Q. Li, Y. Dai, D. Ma, M.-Q. Zhu, J. Mater. Chem. A 2012, 22.
    [64] C.-J. Liu, C.-C. Wang, D.-L. Kuo, C.-Y. Yu, Polymer 2019, 181, 121770.
    [65] L. Liao, Y. Pang, L. Ding, F. E. Karasz, Macromolecules 2004, 37, 3970.
    [66] C.-Y. Yu, M. L. Turner, Angew. Chem. Int. Ed. 2006, 118, 7961.

    無法下載圖示 全文公開日期 2024/09/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2120/09/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE