簡易檢索 / 詳目顯示

研究生: 蘇品諺
Pin-Yan Su
論文名稱: 使用快速二元視窗切換技術與一階電容交換技術之十二位元每秒一千次取樣-超低功耗寬溫度範圍連續漸進式類比至數位轉換器
Ultra Low Power Wide Temperature Range 12-Bit 1-KS/s SAR ADC with Level-One CapacitorSwapping and Fast Binary-Window DAC Switching
指導教授: 陳伯奇
Po-Ki Chen 
鍾勇輝
Yung-Hui Chung
口試委員: 陳伯奇
Poki Chen
鍾勇輝
Yung-Hui Chung
盧志文
Chih-Wen Lu
陳信樹
Hsin-Shu Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 124
中文關鍵詞: 超低功耗電容交換技術二元視窗切換技術類比至數位轉換器低壓差穩壓器參考電壓緩衝器
外文關鍵詞: ultra-low power, capacitor swapping technique, binary window switching technique, analog-to-digital converter, low-dropout regulator, reference buffer
相關次數: 點閱:276下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文探討 DAC 在 SAR ADC 使用時會面臨洩漏和訊雜比(SNDR)/有效位元數(ENOB)的損失,為此使用一階電容交換技術與快速二元視窗切換技術來降低 DAC 電容以進一步節省功耗。由於電源電壓較低,SAR ADC 的取樣開關存在亞閾值洩漏,隨著取樣率越低,通過開關的洩漏電流會影響轉換精度,因為總”洩漏時間”會增加。此外 SAR ADC 必須保持儲存在電容器的電壓,直到位循環階段結束。本論文透過對靴帶式取樣開關做改善,以降低漏電流對 ADC 的影響。
本論文分為兩個晶片 :
類比至數位轉換器晶片以 TSMC 0.18μm CMOS 製程實現,整體晶片含I/O PADs 之晶片面積為 0.912mm2 。 其 中 類 比 至 數 位 轉 換 器 面 積 約 為0.25??2(627?? × 400??)。類比至數位轉換器解析度為十二位元,取樣頻率為1-KS/s,操作電壓為 0.5V。電路功耗為 8.264nW,訊號對雜訊與失真比(SINAD)為 69.69dB,有效位元(ENOB)為 11.28bits,無雜散動態範圍(SFDR)為 92.84dB,FOM 為 3.32fJ/c-s。
類比至數位轉換器搭參考電壓緩衝器之晶片以 TSMC 0.18μm CMOS 製程實現,整體晶片含 I/O PADs 之晶片面積為 0.991mm2。其中類比至數位轉換器與參考電壓緩衝器之面積約為 0.303??2(643?? × 472??)。類比至數位轉換器解析度為十二位元,取樣頻率為 1-KS/s,操作電壓為 0.5V;參考電壓緩衝器操作電壓為 0.7V。電路功耗為 3.175?W,其中類比至數位轉換器功耗為 8.264nW,參考電壓緩衝壓器則為 3.167?W,訊號對雜訊與失真比(SINAD)為 68.66dB,有效位元(ENOB)為 11.11bits,無雜散動態範圍(SFDR)為 87.11dB,FOM 為 3.74fJ/cs (無列入 Reference Buffer 功耗)。


This thesis investigates the challenges faced by DAC in SAR ADC, such as
leakage and loss of SNDR/ENOB. To further reduce power consumption, this thesis
uses a first-order capacitor switching technique and a fast binary window switching
technique to reduce DAC capacitance. As the power supply voltage decreases,
subthreshold leakage exists in the sampling switches of the SAR ADC. The leakage
current passing through the switches affects the conversion accuracy, as the total
"leakage time" increases when the sampling rate becomes lower. Additionally, the SAR
ADC must maintain the voltage stored in the capacitors until the bit cycle phase ends.
This thesis enhances the bootstrapped sampling switch to reduce the impact of leakage
current on the ADC.
There are two chips designed in as follows:
An analog-to-digital converter chip is implemented in a TSMC 0.18μm CMOS
process. The overall chip area, including I/O PADs, is 0.912mm2
. The analog-to-digital converter has an area of approximate 0.25mm2
(627μm × 400μm). The analog-to-digital
converter has a resolution of twelve bits, a sampling frequency of 1-KS/s, and an
operating voltage of 0.5V. The circuit consumes 8.264nW of power, with a signal-tonoise-and-distortion ratio (SINAD) of 69.69dB, effective number of bits (ENOB) of
11.28bits, spurious-free dynamic range (SFDR) of 92.84dB, and FOM of 3.32fJ/c-s.
Another analog-to-digital converter chip with a reference buffer is implemented in
TSMC 0.18μm CMOS process. The overall chip area, including I/O PADs, is 0.991mm2
.
The analog-to-digital converter and the reference buffer have an area of approximate
0.303mm2
(643μm × 472μm). The analog-to-digital converter has a resolution of twelve
bits, a sampling frequency of 1-KS/s, and an operating voltage of 0.5V. The reference
buffer has an operating voltage of 0.7V. The circuit power consumption is 3.175uW,
where the analog-to-digital converter consumes 8.264nW of power, and the reference
buffer power consumption is 3.167uW. The signal-to-noise-and-distortion ratio
(SINAD) is 68.66dB, the effective number of bits (ENOB) is 11.11bits, the spuriousfree dynamic range (SFDR) is 87.11dB, and the FOM is 3.74fJ/c-s (excluding the
reference buffer power).

目 錄 誌 謝..........................................V 目 錄........................................ VI 圖目錄....................................... VIII 表目錄....................................... XIII 第 1 章.............................................1 1-1 研究背景與動機 .................1 1-2 論文架構 .............................2 第 2 章.............................................3 2-1 類比至數位轉換器效能之衡量標準 ...................................4 2-2 類比至數位轉換器選擇 ...............................10 第 3 章...........................................14 3-1 類比至數位轉換器之架構 ................................14 3-2 取樣電路 ...........................16 3-2-1 單一電晶體開關........17 3-2-2 互補式開關................19 3-2-3 靴帶式取樣開關........21 3-2-4 兩倍電壓靴帶式取樣開關.............................................29 3-2-5 保持模式漏電流........33 3-3 比較器 ...............................36 3-3-1 雙級動態比較器........36 3-3-2 比較器雜訊模擬........38 3-3-3 比較器偏移電壓模擬...................40 3-3-4 比較器規格................41 3-4 數位類比轉換器 ...............42 3-4-1 電容交換技術............42 3-4-2 快速二元視窗切換技術....................................................45 3-4-2 數位類比轉換器電容陣列設計..........................................48 3-4-3 Vcm-Based Switching....................51 3-4-4 Monotonic Capacitor Switching................................54 3-4-5 Switchback Switching......................56 3-4-6 電壓幫浦式時脈驅動電路...................................57 3-5 邏輯控制電路 ...................59 3-5-1 Asynchronous Clocks and Control Logic...........................60 3-5-2 SAR control.................63 3-5-3 Capacitor Swapping Digital control...................................64 3-5-4 CKc Loop V.S. DAC Loop..................................65 3-6 佈局考量 ...........................65 3-6-1 電容陣列佈局............68 第 4 章...........................................70 4-1 佈局前模擬 (Pre-Simulation) .............................................70 4-2 佈局後模擬 (Post-Simulation).................................................77 4-3 類比至數位轉換器總體性能 ..................................85 4-4 量測 ...................................87 4-4-1 量測結果....................87 4-5 晶片效能比較 ...................91 第 5 章...........................................92 5-1 參考電壓緩衝器之架構 ...92 5-2 誤差放大器 .......................93 5-2-1 疊接補償式二階放大器........................................94 5-3 參數設計考量 ...................97 5-3-1 類比至數位轉換器參數考量.................................97 第 6 章.........................................100 6-1 佈局前模擬 (Pre-Simulation) ...........................................100 6-2 佈局後模擬 (Post-Simulation).....................................107 6-3 具參考電壓緩衝器之類比至數位轉換器總體性能 ....................................115 6-4 量測結果 .........................117 第 7 章.........................................120 7-1 結論 .................................120 7-2 未來展望 .........................120 參考文獻.....................................122

[1] X. Zou, X. Xu, J. Tan, L. Yao, and Y. Lian, "A 1-V 1.1-μW sensor interface IC for
wearable biomedical devices," in IEEE International Symposium on Circuits and
Systems(ISCAS), May. 2008, pp. 2725- 2728.
[2] R. Van de Plassche, CMOS Integrated Analog-to-Digital and Digital-toAnalogConverters. Kluwer Academic Publishers, second ed., 2003.
[3] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, seconded.,
2001.
[4] B. Razavi, Principles of Data Conversion System Design. John Willy and Sons, Inc.,
first ed., 1995.
[5] M. Dessouky and A. Kaiser, "Input switch configuration suitable for rail-to-rail
operation of switched op amp circuits," in Electronics Letters, vol. 35, no. 1, pp. 8-
10, 7 Jan. 1999.
[6] C. C. Enz, F. Krummenacher, E. A. Vittoz, "An analytical MOS transistor model
valid in all regions of operation and dedicated to low-voltage and low-current
applications", Analog Integrat. Circuits Signal Process., vol. 8, pp. 83-114, 1995.
[7] J. Lin and C. Hsieh, "A 0.3 V 10-bit SAR ADC With First 2-bit Guess in 90-nm
CMOS," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64,
no. 3, pp. 562-572, March 2017.
[8] M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, “A low-noise self-calibrating
dynamic comparator for high-speed ADCs,” in Proc. IEEE Asian Solid-State
Circuits Conf., Nov. 2008, pp. 269–272.
[9] A. Nikoozadeh and B. Murmann, "An Analysis of Latch Comparator Offset Due to
Load Capacitor Mismatch," in IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 53, no. 12, pp. 1398-1402, Dec. 2006.
[10] Y.-H. Chung, M.-H. Wu, and H.-S. Li, “A 12-bit 8.47-fJ/conversion-step capacitorswapping SAR ADC in 110-nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 62, no. 1, pp. 10–18, Jan. 2015.
[11] Y.-H. Chung, C.-W. Yen, P.-K. Tsai, and B.-W. Chen, “A 12-bit 40-MS/s SAR ADC
With a Fast-Binary-Window DAC Switching Scheme, ”IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, pp. 1-10, July 2018.
[12] Y. Zhu et al., "A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS," in
IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, June 2010.
[13] C. Liu, S. Chang, G. Huang and Y. Lin, "A 10-bit 50-MS/s SAR ADC With a
Monotonic Capacitor Switching Procedure," in IEEE Journal of Solid-State
Circuits, vol. 45, no. 4, pp. 731-740, April 2010.
[14] G.-Y. Huang, et al., “10-bit 30-MS/s SAR ADC Using a Switchback Switching
Method,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.
21, no. 3, March 2013.
[15] S. He and C. E. Saavedra, "Design of a Low-Voltage and Low-Distortion Mixer
Through Volterra-Series Analysis," in IEEE Transactions on Microwave Theory
and Techniques, vol. 61, no. 1, pp. 177-184, Jan. 2013.
[16] S.-W. Chen et al, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-
μmCMOS,” IEEE Journal of Solid-State Circuits, vol. 41, no. 12 , Nov. 206
[17] Y. Nan, C. Zhan, G. Wang, L. He and H. Li, "Replica-based low drop-out voltage
regulator with assistant power transistors for digital VLSI systems", Proc. IEEE
Comput. Soc. Annu. Symp. VLSI (ISVLSI), pp. 6-9, 2018.
[18] V. Saxena and R. J. Baker, "Compensation of CMOS op-amps using split-length
transistors," in 2008 51st Midwest Symposium on Circuits and Systems, 2008:
IEEE, pp. 109-112.
[19] R. J. Baker, CMOS: Circuit Design, Layout and Simulation, 2nd ed., Wiley-IEEE,
2005.
[20] V. Saxena, R. J. Baker, “Indirect Feeback Compensation of CMOS OpAmps,”
proceedings of the IEEE/EDS WMED, pp. 3-4, April, 2006.
[21] P. J. Hurst, S. H. Lewis, J. P. Keane, “Miller Compensation Using Current Buffers
in Fully Differential CMOS Two-Stage Operational Amplifiers,” IEEE Tran. on
Circuits and Systems I- Regular Papers, vol. 51, no. 2, Feb. 2004.
[22] P.R. Gray, P. J. Hurst, S. H. Lewis, R. G. Meyer, “Analysis and design of Analog
Integrated Circuits,” 4th ed., John Wiley & Sons, 2001.
[23] M. Zamprogno, A. Minuti, F. Girardi, P. Confalonieri, and G. Nicollini, “A 10-b
100-kS/s 1-mW general-purpose ADC for cellular telephones,” IEEE Trans.
Circuits Syst. II, vol. 59, no. 3, pp. 138–142, Mar. 2012.
[24] P. Harikumar and J. J. Wikner, “Design of a reference voltage buffer for a 10-bit
50 MS/s SAR ADC in 65 nm CMOS,” in 2015 IEEE International Symposium on
Circuits and Systems (ISCAS), 2015, pp. 249–252.
[25] W. Mao, Y. Li, C.-H. Heng, and Y. Lian, ‘‘A low power 12-bit 1-kS/s SAR ADC
for biomedical signal processing,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol.
66, no. 2, pp. 477–488, Feb. 2019.
[26] X. Zou, X. Xu, L. Yao and Y. Lian, "A 1-V 450-nW Fully Integrated Programmable
Biomedical Sensor Interface Chip," in IEEE Journal of Solid-State Circuits, vol.
44, no. 4, pp. 1067-1077, April 2009.
[27] A. Sharma et al., “Multi-modal smart bio-sensing SoC platform with >80 dB SNR
35μA PPG RX chain,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2016, pp.
1–2.
[28] H. Tang, Z. C. Sun, K. W. R. Chew, and L. Siek, “A 5.8 nw 9.1- enob 1-ks/s local
asynchronous successive approximation register adc for implantable medical
device,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.
22, no. 10, pp. 2221–2225, 2014.
[29] D. Zhang, A. Bhide, and A. Alvandpour, "A 53-nW 9.1-ENOB 1-kS/s SAR ADC
in 0.13-μm CMOS for Medical Implant Devices," IEEE J. Solid-State Circuits, vol.
47, pp. 1585-1593, Jul. 2012.

無法下載圖示 全文公開日期 2028/08/07 (校內網路)
全文公開日期 2043/08/07 (校外網路)
全文公開日期 2043/08/07 (國家圖書館:臺灣博碩士論文系統)
QR CODE