簡易檢索 / 詳目顯示

研究生: 陳勝軒
Sheng-Hsuan Chen
論文名稱: 不確定耗能與環境溫度下高科技廠房空調系統之最佳化控制
Optimal control of HVAC system for manufacturing systems under uncertainty
指導教授: 王孔政
Kung-Jeng Wang
口試委員: 林承哲
Cheng-Jhe Lin
王偉驎
Wei-Ling Wang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 57
中文關鍵詞: 節能規劃混整數規劃隨機最佳化
外文關鍵詞: Energy Conservation, Mixed Integer Mathematical Programming, Stochastic Optimization
相關次數: 點閱:348下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年環保意識抬頭,對於高科技產業來說,節能規劃始終是企業內部非常注重且急需改善的問題之一,本研究針對面板製造廠房之中央空調系統,提出一混整數規劃模型,進行最佳化空調系統控制,同時考量冷凍噸需求與室外溫度之不確定性,透過隨機最佳化模型,訂定不同需求與溫度環境下,最為穩健的空調系統控制。實驗結果顯示,本模型可為個案公司減少3.2%的系統總耗能,進而達到節能效果。


    Many high-tech industries consume energy heavily. This study focuses on the optimal control of the heating, ventilation, and air conditioning (HVAC) system in the high-tech industries as considering simultaneously the cooling demand and environmental uncertainty. This study investigates the HVAC system control and uses a leading TFT-LCD manufacturing firm in Taiwan as an example. A stochastic mixed integer mathematical programming model of power consumption is built for optimizing the operation of HVAC to achieve energy conservation. We examine the influence of different sampling distributions of indoor cooling demand and outdoor temperature. Experimental results indicate that the presented model saves up to 3.2% total energy consumption for the HVAC system for the TFT-LCD manufacturing plant under investigation.

    摘要 I ABSTRACT II CONTENT III FIGURE LIST V TABLE LIST VI Chapter 1 Introduction 7 1.1 Research background and motivation 7 1.2 Research purpose and scope 8 Chapter 2 Literature Survey 10 2.1 HVAC System 10 2.2 Factors affecting HVAC system power consumption 11 2.2.1 The factors of power consumption of individual devices 11 2.2.2 Interactive factors of power consumption between devices 12 2.3 HVAC system Optimization 13 Chapter 3 Method and Implementation 17 3.1 Operations optimization modeling 18 3.1.1 Nomenclature 18 3.1.2 Objective function 22 3.1.3 Constraints 23 3.2 Power consumption estimation modeling 26 3.2.1 Forecast model of power consumption 26 3.2.2 Test for significance of regression 27 3.3 Scenario sampling procedure 28 Chapter 4 Experiments and Analysis 29 4.1 Fitting the regression model for device power consumption 29 4.2 Results and comparison 31 4.3 Discussion on impact of uncertainties 33 Chapter 5 Conclusions and Future Research 42 Reference 43 Appendix 46 A. Data of Experiments 46 B. Scenarios data of indoor cooling demand and outdoor temperature 50

    ASHRAE, 1999. Supervisory Control Strategies And Optimization, HVAC Handbook Application, Ch 40.
    ASHRAE, 2007. HVAC Handbook Application, Ch 41.
    Bureau of Energy, Ministry of Economic Affairs, R.O.C., 2006. Energy report, http://www.moeaboe.gov.tw/.
    Chang Y.C., 2006. An Outstanding Method for Saving Energy-Optimal Chiller Operation, IEEE Transactions on Energy Conservation, 21 (2).
    Chang Y.C., and Chen W.H., 2009. Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy. Energy, 34, 448-456.
    Chang Y.C., Chan T.S., and Lee W.S., 2010. Economic dispatch of chiller plant by gradient method for saving energy. Applied Energy, 87, 1096-1101.
    Chang Y.C., Lee C.Y., Chen C.R., Chou C.J., and Chen W.H., 2009. Evolution strategy based optimal chiller loading for saving energy. Energy Conversion and Management, 50, 132-139.
    Cheng Y.C., 2007. Application of genetic algorithm to the optimal-chilled water supply temperature calculation of air-conditioning systems for saving energy, International Journal of Energy Research, 31, 796-810.
    Cheng Y.C., 2009. Application of Hopfield Neural Network to the optimal chilled water supply temperature calculation of air-conditioning systems for saving energy. International Journal of Thermal Sciences, 48, 1649-1657.
    Fong K.F., Hanby V.I., and Chow T.T., 2009. System optimization for HVAC energy management using the robust evolutionary algorithm. Applied Thermal Engineering, 29, 2327-2334.
    Guan X., Xu Z., and Jia Q.S., 2010. Energy-Efficient Buildings Facilitated by Microgrid. IEEE Transactions on Smart Grid, 1 (3).
    Jia L., Yu Z., Murphy-Hoye M.C., Pratt A., Piccioli E.G., and Tong L., 2011. The 2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).
    Lu L., Cai W., Chai Y.S., and Xie L., 2005. Global optimization for overall HVAC systems–Part I problem formulation and analysis. Energy Conversion and Management, 46, 999-1014.
    Lu L., Cai W., Soh Y.C., Xie L., and Li S., 2004. HVAC system optimization- condenser water loop. Energy Conversion and Management, 45, 613-630.
    Lu L., Cai W., Xie L., Li S., and Soh Y.C., 2005. HVAC system optimization—in-building section. Energy and Buildings, 37, 11-22.
    Ma Y. and Borrelli F., 2012. Fast Stochastic Predictive Control for Building Temperature Regulation. The 2012 American Control Conference, Fairmont Queen Elizabeth, Montréal, Canada.
    Ma Z. and Wang S., 2011. Supervisory and optimal control of central chiller plants using simplified adaptive models and genetic algorithm. Applied Energy, 88, 198-211.
    Monfet D. and Zmeureanu R., 2012. Ongoing commissioning of water-cooled electric chillers using benchmarking models. Applied Energy, 92, 99-108.
    Oldewurtel F., Parisio A., Jones C.N., Morari M., Gyalistras D., Gwerder M., Stauch V., Lehmann B., and Wirth K., 2010. Energy Efficient Building Climate Control using Stochastic Model Predictive Control and Weather Predictions. The 2010 American Control Conference, Marriott Waterfront, Baltimore, MD, USA.
    Orosa J.A., 2012. A new stochastic approach to weather condition for wind energy applications. Energy Education Science and Technology Part A: Energy Science and Research, 28 (2), 1093-1106.
    Santoso T., Ahmed S., Goetschalckx M.,Shapiro A., 2005. A stochastic programming approach for supply chain network design under uncertainty. European Journal of Operational Research, 167, 96-115.
    Shapiro A., Homem-de-Mello T., 1998. A simulation-based approach to two-stage stochastic programming with recourse. Mathematical Programming, 81, 301-325.
    Swenson, S. D., 1995. HVAC: heating, ventilating, and air conditioning. Homewood, Illinois: American Technical Publishers. ISBN 978-0-8269-0675-5.
    Taiwan Green Productivity Foundation, 2009. http://www.ecct.org.tw/event/.
    Tanimoto J. and Hagishima A., 2005. State transition probability for the Markov Model dealing with on/off cooling schedule in dwellings. Energy and Buildings, 37, 181-187.
    Tanimoto J., Hagishima A., and Sagara H., 2008. A methodology for peak energy requirement considering actual variation of occupants behavior schedules. Building and Environment, 43, 610-619.
    The Economist, 2010. Keeping cool and green, The Economist, 17, 83.
    United Nations Intergovernmental Panel on Climate Change, 2009. http://www.ipcc.ch/.
    Vakiloroaya V., Ha Q.P., and Samali B., 2013. Energy-efficient HVAC systems: Simulation-empirical modelling and gradient optimization. Automation in Construction, 31, 176-185.
    Vetterli J. and Benz M., 2012. Cost-optimal design of an ice-storage cooling system using mixed-integer linear programming techniques under various power tariff schemes. Energy and Buildings, 49, 226-234.

    無法下載圖示 全文公開日期 2018/07/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE