簡易檢索 / 詳目顯示

研究生: 劉沛儒
Pei-Ru Liu
論文名稱: 寬頻帶注入鎖定除三/除五除頻器
Wide-Band Divide-by-3/5 Injection-Locked Frequency Divider
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
黃進芳
Jhin-Fang Huang 
賴文政
Wen-Cheng Lai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 119
中文關鍵詞: 注入鎖定除頻器
外文關鍵詞: Injection-Locked Frequency Divider
相關次數: 點閱:202下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

此文章分為三個部分,第一個是一個寬頻範圍鎖定除三/除五除頻器,第二個是寬頻範圍鎖定除五除頻器,最後一個是寬頻範圍鎖定除三除頻器,三者皆使用了標準台積電0.18微米製程去實現。
第一個電路,呈現一個電容叉對共振腔震盪器,實現寬頻注入鎖定除三/除五除頻器,此除頻器使用台積電矽鍺0.18微米製程,晶片面積為0.817 * 1.176 mm2。此電路包含一組雙注入訊號的N型金氧半電晶體並聯共振腔三個電感、兩個電阻、兩個電容所以及兩個N型金氧半電晶體交錯耦合對為中心所組成的電壓控制震盪器所組成。工作電壓操作在0.9伏,消耗功率為7.05mW,在注入強度為0 dBm時,除三的除頻範圍從5.8 GHz至 10 GHz,百分比為53.16%,除五的除頻範圍 從11.2GHz至14.2GHz,百分比為23.6%。
第二個電路描述一個超寬鎖頻範圍除五注入鎖定除頻器,是使用 TSMC 0.18 μm CMOS製程,晶片面積為0.982 × 1.128 mm2。此注入鎖定除頻器是使用雙諧振RLC共振腔以及線性混波器來擴大鎖頻範圍。量測結果為供應電壓1.15 伏特,功耗為9.04 mW。注入訊號為0 dBm時,其除五鎖頻範圍為11.3至15.75 GHz (32.9%)。
第三個電路研究偏壓對雙諧振除三注入鎖定除頻器的特性,0.18微米的互補式金氧半導體雙諧振重疊或非重疊的鎖定頻率範圍是依偏壓條件決定。量測結果為供應電壓0.8伏特功耗為9.57 mW,注入訊號為0 dBm時,其除三鎖頻範圍為7至11.7 GHz (50.26%)。


First, a wide locking range divide-by-3 and divide-by-5 injection-locked frequency divider (ILFD) using a standard 0.18μm BiCMOS process is presented. The ILFD circuit bases on capacitive cross-coupled oscillator and uses resonator with resistor to enhance the locking range. The power consumption of the ILFD core is 7.05mW. The divider’s free-running frequency is around 2.516GHz, and at the incident power of 0dBm the divide-by-5 locking range is 3 GHz (23.6%), from the incident frequency 11.2 to 14.2GHz; the divide-by-3 locking range is 4.2 GHz (53.16%), from the incident frequency 5.8 to 10GHz.
Secondly, a wide locking range divide-by-5 injection-locked frequency divider (ILFD) using a standard 0.18 μm CMOS process is presented. The ILFD circuit is realized with a cross-coupled n-core MOS dual-resonance RLC-tank oscillator with linear mixer to extend the locking range. The core power consumption of the ILFD core is 9.04 mW. The divider’s free-running frequency has dual-bands at 3.12 and 2.62 GHz by switching the varactor’s control bias, and at the incident power of 0 dBm the locking range is 4.45 GHz (32.9%), from the incident frequency 11.3 to 15.75 GHz.
Finally, this thesis studies the bias effect on the performance of a divide-by-3 injection-locked frequency divider (ILFD) with dual-resonance (DR) RLC resonator. The 0.18 μm CMOS DR ILFD circuit has overlapped and non-overlapped dual-band locking ranges depending upon the bias condition. The ILFD was fabricated in TSMC 0.18 μm CMOS technology and occupies a die area of 0.8379 ×0.935mm2.

中文摘要 I Abstract III 致謝 IV Table of Contents V List of Figures VIII List of Tables XIV Chapter 1 Introduction 1 Chapter 2 Overviews of Oscillators 6 Chapter 3 Overviews of Injection Locked Frequency Divider 54 Chapter 4 Wide-Band Divide-by 3/5 Injection-Locked Frequency Divider 61 Chapter 5 A Wide-Band ÷5 Injection-Locked Frequency Divider 73 Chapter 6 Study on Dual-Resonance RLC Divide-by-3 Injection-Locked Frequency Divider 81 Chapter 7 Conclusion 95 References 97

[1] N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 810-820, May. 1992.
[2] S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
[3] J. Roggers, C. Plett, Radio frequency integrated circuit design, Artech House, 2003.
[4] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
[5] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun. 1974.
[6] J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May. 1997.
[7] P. Yue, C. Ryu, JackLau, T. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996.
[8] P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp. 404-606, 6-10 Feb. 2005.
[9] J.J. Rael, and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569–572, 2000.
[10] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326–336, Mar. 2000.
[11] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
[12] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
[13] A. Hajimiri and T. H. Lee, “Design Issues in CMOS differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717–724, May. 1999.
[14] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June. 1999.
[15] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July. 1996.
[16] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
[17] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
[18] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
[19] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
[20] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection-locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June. 2001.
[21] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July. 2002.
[22] Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
[23] Hajimiri and T. H. Lee, “Design Issues in CMOS differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717–724, May 1999.
[24] K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injectionlockeddivider,” in IEEE Int. Solid-State Circuits Conf. Dig.,pp. 2472–2481, Feb. 2006.
[25] Kennedy M. et al, “A high frequency ‘divide-by-odd number’ CMOS LC injection-locked frequency divider”,Analog Integr Circ Sig Process.pp 415-42, Oct. 2013
[26] M. Tiebout. “A CMOS direct injection-locked oscillator topologyas high-frequency low-power frequency divider,” IEEE J. Solid-StateCircuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
[27] S.-L. Jang, C.-W. Chang, C.-F. Lee, and J.-F. Huang,”Divide-by-3 LC injection locked frequency divider implemented with 3D inductors,” IEICE Trans. Electronics., Vol.E91-C,No.6,pp.956-962,Jun. 2008
[28] S.-L. Jang, Y.-J. Chen, C.-H. Fang and W. C. Lai, ” Enhanced locking range technique for frequency divider using dual-resonance RLC resonator',”Electronics Letters ,vol. 51, no. 23, 05p. 1888 – 1889. Nov 2015.
[29] S.-L. Jangand C.-Y. Lin, ” A wide-locking range Class-C injection-locked frequency divider,”Electronics Letters .,vol. 50, 23, pp.1710-1712, 2014.
[30] S.-L. Jangand C.-H. Fang, ”Divide-by-4 capacitive cross-coupled injection-locked frequency divider,”Analog Integr Circ Sig Process.,86:59-63,2016.
[31] S.-L. Jang, R.-K. Yang, C.-W. Chang, and M.-H. Juang,” Multi-modulus LC injection-locked frequency dividers using single-ended injection,” IEEE Microw. Wireless Compon. Lett., pp. 311-313, May, 2009.
[32] S.-L. Jang,C.-F. Leeand J.-C. Luo,,”A CMOS LC injection-locked frequency divider with the division ratio of 2 and 3,” Microw. Opt. Technol. Lett.,pp. 1263-1267, May 2009.
[33] S.-L. Jang,C.-Y. Lin, C.-C. Liu, and J.-F. Huang, ” Dual-band CMOS injection-locked frequency divider with variable division ratio,”IEICE Trans. Electron.,Vol.E92-C, No.4, pp.550-557,Apr. 2009.
[34] M.-W. Li, P.-C. Wang, T.-H. Huang, and H.-R. Chuang, “Low-voltage,wide locking range, millimeter-wave divide-by-5 injection-locked frequency dividers,”IEEE Trans. Microw. Theory Tech., vol. 60, no. 3,pp. 679–685, Mar. 2012.
[35] H. Wu and L. Zhang, “A 16-to-18 GHz 0.18μmepi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE ISSCC Tech.Dig. Tech., Feb. 2006, pp. 27–29.
[36] X. Yi, C. C. Boon, M. A. Do, K. S. Yeo, and W. M. Lim, “Design of ring-oscillator-based injection-locked frequency dividers with single-phase inputs”, IEEE Microw.Wireless Compon. Lett., vol. 21, no. 10, pp. 559-561, 2011.
[37] P.-K. Tsai, T.-H. Huang and Y.-H. Pang, “CMOS 40 GHz divide-by-5 injection-locked frequency divider, ” IET Electronics Letters, vol.46, no.14, pp.1003-1004, Jul. 2010.
[38] M.-W. Li, P.-C. Wang, T.-H. Huang, and H.-R. Chuang, “Low-voltage, wide locking range, millimeter-wave divide-by-5 injection-locked frequency dividers,”IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 679–685, Mar. 2012.
[39] M. Jalalifar and G.-S. Byun, ” A K-band divide-by-five injection-locked frequency divider using a near-threshold VCO,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 12, pp. 881-883, 2014.
[40] S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng,” Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, October 2013.
[41] S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J.-F. Huang," Injection-locked frequency divider using injection mixer DC-biased in sub-threshold," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195, March 2015.
[42] Sheng-Lyang Jang, Yu-Jen Chen, Chih-Han Fang and Wen Cheng Lai, ” Enhanced Locking Range Technique for Frequency Divider Using Dual-Resonance RLC Resonator,” Electronics Letters ,vol. 51, no. 23, 05 Nov 2015, p. 1888 – 1889.
[43] ]Sheng-Lyang Jang,Wen-Cheng Lai, Wei-Chih Lai, and Miin-Horng Juang,“Wide-Band Divide-by-4 Injection-Locked Frequency Divider Using RLC Resonator and Capacitive Cross-Coupled Oscillator,” IEEE IWS2016, Shanghai, Jiangsu, China 2016.
[44] Sheng–Lyang Jang, Wei-Chung Cheng and Ching-Wen Hsue, ” A Triple-Resonance RLC-tank Divide-by-2 Injection-Locked Frequency Divider,” Electronics Letters Available online: 17 February 2016.
[45] Sheng–Lyang Jang, Wei-Chung Cheng and Ching-Wen Hsue, " Wide-Locking Range Divide-by-3 Injection-Locked Frequency Divider Using 6th-Order RLC Resonator," accepted, IEEE Trans. on Very Large Scale Integration Systems 2016.
[46] S. L. Jang, Y. K. Wu, C. C. Liu, and J. F. Huang,“A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett.,, vol. 19, pp. 816-818, Dec.2009.
[47] Nikolay T. Tchamov, Svetozar S.Broussev, “Dual-band LC VCO architecture with a fourth-order resonator” IEEE Trans. circuits and systems—II: Express Briefs, vol. 54, no. 3, March 2007.
[48] S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng,” Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, October 2013
[49] S.-L. Jang, C.-W. Chang, J.-Y. Wun, and M.-H. Juang, ” Quadrature injection-locked frequency dividers using dual-resonance resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 37-39, 2011.
[50] S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J.-F. Huang," Injection-locked frequency divider using injection mixer DC-biased in sub-threshold," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195, March 2015.
[51] H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp.27–29.
[52] S.-L. Jang, C.-W. Chang, C.-F. Lee, and J.-F. Huang, “Divide-by-3 LC injection locked frequency divider implemented with 3D inductors,” IEICE Trans. Electron., vol. E91-C, no. 6, pp. 956–962, Jun. 2008.
[53] S.-L. Jang, C.-Y. Lin, and C.-F. Lee, “A low voltage 0.35 μm CMOS frequency divider with the body injection technique,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp.470–472, July 2008.
[54] S.-L. Jang, C.-C. Liu, and J.-F. Huang, ” Divide-by-3 injection-locked frequency divider using two linear mixers,” IEICE Trans. on Electron., Vol.E93-C,No.1,pp.136-139, Jan. 2010.
[55] S.-L. Jang, and C.-W. Chang, ” A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.229-231, April, 2010.
[56] S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, ” A wide-locking range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.390-392, July, 2010.
[57] Y.-T. Chen, M.-W. Li, H.-C. Kuo, T.-H. Huang, and H.-R. Chuang, “Low-voltage K-band divide-by-3 injection-locked frequency divider with floating-source differential injector,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 160–67, 2012.
[58] S.-L. Jang, and J.-H. Hsieh, ” A wide-locking range ÷3 injection-locked frequency divider using concurrent injection mechanisms,” Analog Integr Circ Sig Process, Vol. 77, Issue 3, pp 593-598., Dec. 2013.
[59] S.-L. Jang and C.-Y. Chuang, ” Wide-locking range ÷3 series-tuned injection-locked frequency divider,” Analog Integr Circ Sig Process, Vol. 76, 1, pp. 111-116., Jan. 2013.
[60] Jang S.-L., Lin C.-Y., and Juang M.-H., ” Enhanced locking range technique for a divide-by-3 differential injection-locked Frequency divider,” Electron. Lett., vol. 51, 19, pp. 456 – 458, 2015.
[61] S.-L. Jang, and C.-Y. Lin, ” Wide-locking range Class-C injection-locked frequency divider,” Electron. Lett.,vol. 50, 23, pp.1710-1712, 2015.

無法下載圖示 全文公開日期 2021/08/05 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE