簡易檢索 / 詳目顯示

研究生: 鄭偉德
Wei Te Cheng
論文名稱: 以數位訊號處理器實現以擴展型卡爾曼濾波器為基礎 之超級電容SOC與溫度動態即時估測
EKF-based Supercapacitor SOC and Temperature Real-Time Estimation using Digital Signal Processor
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 林紀穎
Chi -Ying Lin
蘇裕軒
Yu - Hsuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 69
中文關鍵詞: 超級電容即時估測擴張型卡爾曼濾波器
外文關鍵詞: supercapacitor, real time estimation, EKF
相關次數: 點閱:323下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

以擴展型卡爾曼濾波器(Extended Kalman Fulter,EKF) 為基礎所提出之估測器,
因具有雜訊免疫及線上即時估測之能力, 在已知文獻上廣被泛運用於電池之估測, 但鮮
少用於超級電容之估測。在此, 隨著嵌入式系統(Embedded system) 之運算速度增進,
擴展型卡爾曼濾波器之演算可以在短時間內被完成。在超級電容之模型與熱效應模型建
立下, 以電流與端電壓為量測, 以達到超級電容state of charge(SOC) 與溫度動態之即
時估測。
本研究中, 以不同熱傳條件: 絕熱、常溫、低溫以及不同之充放電頻率範圍(18mHz-
0.25Hz) 做測試, 皆得到良好SOC 與溫度估測結果; 並以ADVISOR 模擬New York
City Cycles (NYCC) 之行程電流充放電行程, 其代表在紐約城市低速之交通狀況, 對
超級電容做實際應用上的測試, 並得到良好的結果。
實驗結果可得, 以卡爾曼濾波器為基礎之即時估測, 可以有效的估算出超級電容之
SOC 與溫度動態之狀態, 未來可增加估測之狀態或以即時估測之數值做即時控制。


The noise immunity and real time estimation ability of Extended Kalman filter
(EKF) based observer lead to a popular application in the battery estimation,
but rarely used in the supercapacitor. The enhanced computation of the embedded
system progresses the algorithm of EKF which shortens the process timing.
In this study,to achieve the purposes which are measuring state of charge (SOC)
and temperature by using the model of supercapacitor with thermal effects. In
addition, the experiment set in three different conditions such as adiabatic, room
temperature and low temperature (-39◦C) then testing by different charge frequency
in range 18mHz to 0.25Hz.Furthermore, test EKF by New York City Cycles
(NYCC).All the experiment results indicated that EKF executes in good performance.
Accomplishment of the supercapacitor’s estimation can be developed in
more states also can control the system in real time by the estimate data in the
future.

摘要I ABATRACT II 致謝III 目錄IV 圖目錄VI 表目錄VIII 1 緒論1 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 實驗設備與軟體介紹10 2.1 硬體設備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.1 可程式直流電源供應器. . . . . . . . . . . . . . . . . . . . . . 11 2.1.2 直流電子負載機. . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.3 可程式恆溫試驗機. . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.4 電阻式溫度感應器. . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.5 霍爾元件. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.6 數位訊號處理器[17][18] . . . . . . . . . . . . . . . . . . . . . 17 2.2 軟體. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Code Composer Studio(ccs)[18] . . . . . . . . . . . . . . . . 22 3 超級電容模型23 3.1 交流阻抗分析法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 RC並聯等效電路模型. . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3 RC串並聯等效電路. . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4 超級電容之熱動態模型. . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5 參數鑑別. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 超級電容之擴張型卡爾曼濾波器設計37 4.1 卡爾曼濾波器介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 離散之卡爾曼濾波器[28] . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.3 擴展型卡爾曼濾波器[28] . . . . . . . . . . . . . . . . . . . . . . . . 44 4.4 超級電容之擴張型卡爾曼濾波器. . . . . . . . . . . . . . . . . . . . . 48 5 實驗結果54 5.1 超級電容絕熱之即時估測. . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2 超級電容常溫散熱之即時估測. . . . . . . . . . . . . . . . . . . . . . 56 5.3 超級電容低溫之即時估測. . . . . . . . . . . . . . . . . . . . . . . . . 57 5.4 使用driving cycle 測試. . . . . . . . . . . . . . . . . . . . . . . . . 58 6 結論與未來展望65 6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

[1] 張永瑞、謝錦隆, 再生能源HCPV.SOFC 高功率電力調控系統研製報告技術, 核能研究
所,2009
[2] R. K‥otz and M. Carlen, “Principles and applications of electrochemical capacitors,”
Electrochimica Acta, vol. 45, pp. 2483–2498, 2000.
[3] 林怡慶, 超級電容器技術發展與應用趨勢分析(PART1).ARTC 財團法人車輛測試研究中
心, 2009
[4] A. G. Pandolfo and A. F. Hollenkamp, “Carbon properties and their role in supercapacitors,”
Journal of Power Sources, vol. 157, pp. 11–27, April 2006.
[5] 佳容能源科技有份股限公司,”http://www.ultra-pack.com/tw/.”
[6] F. Belhachem, S. Rael, and B. Davat, “A physical based model of power electric
double-layer supercapacitors,” Industry Applications Conference IEEE, vol. 5, pp.
3069–3076, 2000.
[7] 游國幹、莊正則、黃榮輝, MATLAB 程式設計導論, 儒林圖書公司第1-2頁.
[8] S. Buller, E. Karden, D. Kok, and R. W. D. Doncker, “Modeling the dynamic
behavior of supercapacitors using impedance spectroscopy,” IEEE Transactions on
Industry Applications, vol. 38, no. 6, pp. 1622–1626, November-December 2002.
[9] R. K‥otz, M. Hahna, and R. Gallay, “Temperature behavior and impedance fundamentals
of supercapacitors,” Journal of Power Sources, vol. 154, pp. 550–555,
2005.
67
5d.
[10] H. Gualous, D. Bouquain, A. Berthon, and J. M. Kauffmann, “Experimental study
of supercapacitor serial resistance and capacitance variations with temperature,”
Jourual of power Sources, vol. 123, pp. 86–93, 2003.
[11] J. Schiffer, D. Linzen, and D. U. Sauer, “Heat generation in double layer capacitors,”
Journal of Power Sources, vol. 160, pp. 765–772, February 2006.
[12] Sabine Piller,Marion Perrin,Andreas Jossen,”Methods for state-of-charge determination
and their applications”, Journal of Power Sources, vol. 96, pp. 113-120,
2001.
[13] K.T.Chau ,K.C. Wu, C.C. Chan,W.X.Shen,”A new battery capacity indicator for
nickel-metal hydride battery powered electric vehicles using adaptive neuro-fuzzy
inference system” Energy Conversion and Management, vol. 44, pp. 2059-2071,
2002.
[14] Jaehyun Han,Dongchul Kim,Myoungho Sunwoo,”State-of-charge estimation of
lead-acid batteries using an adaptive extended Kalman filter” Journal of Power
Sources, vol. 188, pp. 606-612, 2009.
[15] Hongwen He,Rui Xiong,Hong,Hongqiang Guo,”Online estimation of model parameters
and state-of-change of LiFePO4 batteries in electric vehicles” Applied Energy,
vol. 89, pp. 413-420, 2012.
[16] Haifeng Dai,Xuezhe Wei,Zechang Sun ,Jiayuan Wang,Weijun Gu,”Online cell SOC
estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV
application” Applied Energy, vol. 95, pp. 227-237, 2012.
[17] 李楓、潘娜,DSP 算法設計與系統方案, 國防工業出版社
[18] 栗思科,DSP 原理及控制系統設計, 清華大學出版社
[19] J.-S. Lai, S. Levy, and M. F. Rose, “High energy density double-layer capacitors
for energy storage applications,” IEEE Aes Magazine, vol. 77, pp. 14–19, 1992.
[20] E. Barsoukov and J. R. Macdonald, Impedane Spectroscopy Theory, Experiment
and Applications. Wiley-Interscience, Hoboken, NJ, 2005.
68
5d.
[21] 鄭文欽,”含熱效應之超級電容等效電路模型”, 碩士論文, 台北,100年
[22] T. Markel, A. Brooker, T. Hendricks, V. Johnson, K. Kelly, B. Kramer, M. O’Keefe,
S. Sprik, and K. Wipke, ”advisor: a systems analysis tool for advanced vehicle
modeling,” Journal of Power Sources, vol.110,pp.255-266,2002
[23] RICHARD E. SONNTAG、CLAUS BORGNAKKE、GORDON J. VAN WYLEN,
”FUNDAMENTALS of Thermodynamics”,SIXTH EDITION,P.102
[24] F. Belhachem, S. Rael, and B. Davat, “A physical based model of power electric
double-layer supercapacitors,” Industry Applications Conference IEEE, vol. 5, pp.
3069–3076, 2000.
[25] R. L. Spyker and R. M. Nelms, “Classical equivalent circuit parameters for a doublelayer
capacitor,” IEEE Transactions on Aerospace and Electronic Systems, vol. 36,
no. 3, pp. 829–836, 2000.
[26] L. Zubieta and R. Bonert, “Characterization of double-layer capacitors for power
electronics applications,” IEEE Transactions on Industry Applications, vol. 36,
no. 1, January-February 2000.
[27] Alvun J. Salkind ,Craig Fennie,Prutpal Singh,Terrill Atwater,David E. Reisner,
”Determination of state-of-change and state-of-health of batteries by fuzzy logic
methodology”, Journal of Power Sources, vol. 80, pp. 293-300, 1999.
[28] K.Ogata,Discrete time control system. Prentice Hall Inc.,1987
[29] 王衍凱,”以擴張型卡爾曼濾波器為基礎之感應馬達無感測控制及定子轉子阻抗估測”, 碩士
論文, 台北,99年
[30] G.Welch and G. Bishop,An Introduction to the Kalman Filter. Department of Computer
Science University of North Carolina at Chapel Hill,2006.

無法下載圖示 全文公開日期 2018/02/04 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE