簡易檢索 / 詳目顯示

研究生: 呂漢廷
Han-Ting Lu
論文名稱: 基於bitwise運算之影像加密系統改進及其FPGA硬體實現
3D-bitwise Image Encryption Scheme’s Improvement and its FPGA Implementation
指導教授: 楊振雄
Chen-Hsiung Yang
口試委員: 吳常熙
Chang-Shi Wu
陳金聖
Chin-Sheng Chen
郭永麟
Yung-Lin Kuo
楊振雄
Chen-Hsiung Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 102
中文關鍵詞: 加密重新排序混淆三維bitmapFPGA
外文關鍵詞: Encryption, Permutation, Diffusion, 3D-bitmap, FPGA
相關次數: 點閱:605下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們改進了一種基於位元運算的影像加密演算法,並以Altera FPGA DE2-115實現完整的加密與傳輸系統,並透過FPGA的流水線特性對其進行計算上的優化。
    我們使用了三維渾沌系統來產生加密過程中所需要的金鑰,在我們的加密演算法中,一共有兩個特色。第一,我們透過自己設計的演算法來對現有的像素打散演算法進行優化,使其具有更好的通用性;第二,我們針對一般加密演算法常使用的互斥或方法進行優化,並利用FPGA設計對應的電路,透過FPGA高度平行化與流水線的特性,可以將演算法的效能提高非常多。在加密安全性分析中,我們除了常用的直方圖分析、相關性係數分析、熵值分析和差異性分析以外,還引入了區域性熵值分析,透過自己設計的實現方法進一步驗證我們加密的效果。從以上分析可以知道,我們所設計的影像加密演算法除了有高通用性,並同時具有高效能的優點,十分適合應用於現有系統中。


    In this thesis, we improved a bitwise-based image encryption algorithm and implemented a encryption and transmission system with Altera FPGA DE2-115, and optimized it through FPGA's pipeline feature.

    We use a three-dimension chaotic system to generate the keys needed for the encryption process. There are two features in our encryption algorithm. First, we proposed an algorithm to improve the existing permutation algorithm to make it more in common use. Second, we optimize the XOR methods used in ordinary encryption algorithms. Use FPGA to design the corresponding circuit, through the highly parallelized and pipelined feature of FPGA, It can improve the efficiency of the algorithm a lot. In the analysis of cryptographic security. We used histogram analysis, correlation coefficient analysis, entropy analysis, and variance analysis, Besides, we also introduced local entropy analysis to verify the effectiveness of our encryption algorithm. Through we proposed an implementation method of the local entropy algorithm. From the above analysis, we can know that the image encryption algorithm we designed is not only highly versatile, but also has the advantages of high performance, and is very suitable for application in realistic systems.

    Chapter 1 1 1.1 Introduction 1 1.2 Motivation and Purpose 1 1.3 Literature Review 2 1.4 Research Method 3 Chapter 2 6 2.1 Chaos-based Encryption Algorithm 6 2.2 3D-bitwise Permutation Algorithm 7 2.3 3D-bitwise Permutation Improvement 9 2.3.1 Improvement Algorithm Design 9 2.3.2 Improvement Algorithm Analysis 10 2.4 Temp-value eXOR Algorithm 13 2.4.1 Expanded XOR Operation 13 2.4.2 Temp-value eXOR Encryption 14 2.5 Encryption and Decryption 17 2.5.1 Encryption and Decryption Algorithm 17 2.5.2 Python Simulation 19 Chapter 3 21 3.1 FPGA Image Encryption System Design 21 3.2 Chen System Implementation 24 3.2.1 Chaos System Discretization 24 3.2.2 System Implementation 25 3.2.3 System Simulation 32 3.3 eXOR Temp-Value Encryption System Implementation 39 3.3.1 eXOR Temp-Value Encryption Algorithm Modify 39 3.3.2 eXOR Temp-Value Encryption FPGA implement 40 3.3.3 Pipeline Optimization for Encryption Module 45 3.4 Encryption System Implementation 47 Chapter 4 53 4.1 Security Analysis Tool 53 4.2 Histogram Analysis 54 4.3 Correlation Analysis 58 4.4 Information Entropy Analysis 70 4.5 Differential Attack Analysis 72 4.6 Local Entropy Analysis 75 4.6.1 Local Entropy Algorithm Implementation 75 4.6.2 Local Entropy Analysis Result 81 4.7 Performance Analysis 81 Chapter 5 83 5.1 Conclusion 83 5.2 Future Work 84

    [1] 周洪波、李吉生、趙曉波,輕鬆讀懂物聯網-技術、應用、標準和商業模式,博碩文化
    [2] Goldberger, A. L. (1996). Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. The Lancet, 347(9011), 1312-1314.
    [3] Weiß, K., Steckstor, T., Koch, G., & Rosenstiel, W. (1999, February). Exploiting FPGA-features during the emulation of a fast reactive embedded system. In Proceedings of the 1999 ACM/SIGDA seventh international symposium on Field programmable gate arrays (pp. 235-242). ACM.
    [4] Jin, S., Cho, J., Dai Pham, X., Lee, K. M., Park, S. K., Kim, M., & Jeon, J. W. (2010). FPGA design and implementation of a real-time stereo vision system. IEEE transactions on circuits and systems for video technology, 20(1), 15-26.
    [5] Matthews, R. (1984). On the derivation of a “Chaotic” encryption algorithm. Cryptologia, 8(1), 29-41.
    [6] Shannon, C. E. (1949). Communication theory of secrecy systems. Bell Labs Technical Journal, 28(4), 656-715.
    [7] Zhang, W., Yu, H., Zhao, Y. L., & Zhu, Z. L. (2016). Image encryption based on three-dimensional bit matrix permutation. Signal Processing, 118, 36-50.
    [8] Chen, G., Mao, Y., & Chui, C. K. (2004). A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos, Solitons & Fractals, 21(3), 749-761.
    [9] Zhang, Y. Q., & Wang, X. Y. (2014). A symmetric image encryption algorithm based on mixed linear–nonlinear coupled map lattice. Information Sciences, 273, 329-351.
    [10] Wang, X., Liu, L., & Zhang, Y. (2015). A novel chaotic block image encryption algorithm based on dynamic random growth technique. Optics and Lasers in Engineering, 66, 10-18.
    [11] Huang, X., & Ye, G. (2014). An image encryption algorithm based on hyper-chaos and DNA sequence. Multimedia tools and applications, 72(1), 57-70.
    [12] Zhang, L. Y., Hu, X., Liu, Y., Wong, K. W., & Gan, J. (2014). A chaotic image encryption scheme owning temp-value feedback. Communications in Nonlinear Science and `Numerical Simulation, 19(10), 3653-3659.
    [13] Hermassi, H., Belazi, A., Rhouma, R., & Belghith, S. M. (2014). Security analysis of an image encryption algorithm based on a DNA addition combining with chaotic maps. Multimedia Tools and Applications, 72(3), 2211-2224
    [14] Wu, Y., Zhou, Y., Saveriades, G., Agaian, S., Noonan, J. P., & Natarajan, P. (2013). Local Shannon entropy measure with statistical tests for image randomness. Information Sciences, 222, 323-342.
    [15] Said Sadoudi, Mohamed Salah Azzaz, Mustapha Djeddou, Mustapha Benssalah. (2009). An FPGA real-time implementation of the Chen’s chaotic system for securing chaotic communications. 7(4), 467-474.
    [16] Lü, J., Chen, G., Cheng, D., & Celikovsky, S. (2002). Bridge the gap between the Lorenz system and the Chen system. International Journal of Bifurcation and Chaos, 12(12), 2917-2926.
    [17] Wikipedia. (2018). Computer display standard.
    [18] Grassberger, P., & Procaccia, I. (1983). Characterization of strange attractors. Physical review letters, 50(5), 346.
    [19] Altera Cooperation. (2011). Video IP Cores for Altera DE-Series Boards.
    [20] Hansch, C., & Leo, A. (1979). Substituent constants for correlation analysis in chemistry and biology. Wiley.
    [21] 林震岩, 多變量分析:SPSS的操作與應用。
    [22] B. Norouzi, S. Mirzakuchaki, “A fast color image encryption algorithm based on hyper-chaotic systems,” Nonlinear Dynamics, vol. 78, no. 2, pp. 995-1015, 2014.
    [23] M. Kumar, P. Powduri, A. Reddy, “An RGB image encryption using diffusion process associated with chaotic map,” Journal of Information Security and Applications, vol. 21, pp. 20-30, 2015.
    [24] H. Hsiao, J. Lee, “Color image encryption using chaotic nonlinear adaptive filter,” Signal Processing, vol. 117, pp.281-309, 2015.
    [25] Wu, Y., Noonan, J. P., & Agaian, S. (2011). NPCR and UACI randomness tests for image encryption. Cyber journals: multidisciplinary journals in science and technology, Journal of Selected Areas in Telecommunications (JSAT), 1(2), 31-38.
    [26] Boriga, R., Dăscălescu, A. C., & Priescu, I. (2014). A new hyperchaotic map and its application in an image encryption scheme. Signal Processing: Image Communication, 29(8), 887-901.

    無法下載圖示 全文公開日期 2023/08/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE