簡易檢索 / 詳目顯示

研究生: 王聖翔
Sheng-Hsiang Wang
論文名稱: 膽管支架自潔多層覆膜研究
A Study of Multilayer Self-Cleaning Membranes for Biliary Stents
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 張復瑜
Fuh-Yu Chang
鍾俊輝
Chun-Hui Chung
林建宏
Chien-Hung Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 116
中文關鍵詞: 可降解高分子自潔覆膜膽管支架
外文關鍵詞: biodegradable polymer, self-cleaning film, biliary stent
相關次數: 點閱:193下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  膽管癌病人的膽管腫瘤所引起的嚴重問題之一為膽道阻塞,目前膽道阻塞的主要解決方式為將膽管支架置入人體,而其最主要的後續問題為支架再阻塞的發生,因此需進行二次的內視鏡手術進行治療,但這容易造成病患生命的風險及財務上的負擔,因此本研究將進行自潔多層覆膜的開發,延緩支架再阻塞的情形。
      本實驗為研究具有自潔功能的覆膜,此覆膜的組成為具有自潔功能的多層可降解薄膜,於其薄膜層中設計其結構的配置,並搭配具有功能性結構的薄膜層,使薄膜在降解時更容易隨結構的崩解而脫落。當覆膜的多層可降解薄膜降解時,附著於覆膜上的髒汙,會隨著PLA (Polylactic Acid)薄膜上圖形的結構崩解成碎片狀而掉落,達到自潔的效果。
      本實驗設計了不同圖形的邊長尺寸與間距大小,發現奈秒雷射所切割出來可製作覆膜的膠膜,最小結構寬度極限約為0.3 mm;透過降解實驗與交叉比較,由降解的結果推測結構與結構間連接處較少的覆膜,圖形崩解的效果較佳;圖形邊長大小與結構間的間距大小比例大者,結構之間的連接處較易斷裂,有較佳的結構崩解剝離能力;若PLA結構層較薄,降解液體容易滲透至下層PVA(Polyvinyl Alcohol)層,在PVA層快速降解後便可將整層PLA結構層剝除;此實驗亦驗證有結構的覆膜能將附著於其上的髒汙,經由多層膜降解崩離的過程順利全部清除。


    Bile duct obstruction is the main problem caused by cholangiocarcinoma. Currently, placing biliary stent in the body is the main solution to biliary occlusion. However, the obstruction could happen again after several months. The secondary endoscopic surgery is a method to solve biliary reocclusion, but it may cause life risk and financial burden. This study is trying to develop a multilayer self-cleaning membrane to postpone stent reocclusion.
    This multilayer self-cleaning membrane consists of biodegradable PLA (Polylactic Acid) films and PVA (Polyvinyl Alcohol) films. In order to achieve the functions that the structural membrane can not only degrade into PLA fragments periodically but also clean the attached contaminant away smoothly. The experiments of this study focus on different kinds of designed patterns and intervals.
    Based on the limitation of nanosecond laser machine, the minimum interval can be downsized to 0.3 mm. The experimental results show the structural film with narrower intervals between the structures can disintegrate more effectively. Also, the structural film can disintegrate effectively with comparatively large ratio of pattern size and connection interval width. If the PLA structural film is thinner, it would disintegrate rapidly after the solution permeates the film and degrade the under PVA film. In addition, our experiments have proved the structural membrane can clean the attached contaminant during degradation process periodically.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 X 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 第二章 文獻回顧 5 2.1 微結構薄膜的相分離製作 5 2.2 自潔覆膜概念 10 2.3 覆膜的蝕刻製程與降解 12 2.4 可降解材料 14 2.4.1 聚乳酸 14 2.4.2 聚乙烯醇 14 2.5 影響降解的因素 16 2.5.1 膽汁鹼性循環降解 16 2.5.2 溫度與pH值對降解的影響 18 第三章 實驗規劃 21 3.1 自潔覆膜圖形的設計 22 3.2 自潔覆膜的製程步驟 23 3.2.1 溶液的配製 23 3.2.2 覆膜製程 26 3.2.3 製作欲降解的覆膜 29 3.3 覆膜降解實驗 31 3.3.1 覆膜的加速降解 31 3.3.2 降解覆膜試片的觀察及製作 31 3.4 實驗設備與儀器 33 3.4.1 IPG光纖雷射金屬打標雕刻機 33 3.4.2 熱風循環烘箱(Cyclic Oven) 34 3.4.3 旋轉塗佈機(Spin Coater) 35 3.4.4 精密電子天秤 36 3.4.5 精密量測天秤(Analytical Balances) 37 3.4.6 磁石加熱攪拌機 38 3.4.7 光學顯微鏡(Optical Microscope,OM) 39 3.4.8 掃描式電子顯微鏡(Scanning Electron Microscope) 41 第四章 實驗結果與討論 43 4.1 雷射切割膠膜縮小尺寸 43 4.1.1 格柵狀膠膜 43 4.1.2 菱格狀膠膜 46 4.2 各參數試片降解情形 49 4.2.1 格柵狀覆膜 49 4.2.2 菱格狀覆膜 51 4.2.3 噴灑髒汙試片 60 4.2.4 覆膜降解前後試片 66 4.3 覆膜降解實驗比較 69 4.3.1 不同幾何排列 69 4.3.2 不同間距 74 4.3.3 不同圖形尺寸 78 4.3.4 圖形大小與間距大小的比例 82 4.3.5 不同厚度的結構層PLA 88 4.3.6 結構帶走髒汙 92 第五章 結論與未來展望 96 5.1 結論 96 5.2 未來展望 98 參考文獻 99

    [1] S. A. Khan, H. C. Thomas, B. R. Davidson, S. D. Taylor-Robinson, “Cholangiocarcinoma”, The Lancet, Vol. 366, pp. 1303-1314, 2005.
    [2] S. Awad, A. M. Zaitoun, D. N. Lobo, “Hepatobiliary and Pancreatic: Blocked Metal Biliary Stent”, Journal of Gastroenterology and Hepatology, Vol. 26, pp. 1694, 2011.
    [3] J. T. Bueno, H. Gerdes, R. C. Kurtz, “Endoscopic management of occluded biliary Wallstents: a cancer center experience”, Gastrointestinal Endoscopy, Vol. 58, pp. 879-884, 2003.
    [4] J. N. Rogart, A. Boghos, F. Rossi, H. Al-Hashem, U. D. Siddiqui, P. Jamidar, Harry Aslanian, “Analysis of endoscopic management of occluded metal biliary stents at a single tertiary care center”, Gastrointestinal Endoscopy, Vol. 68, pp. 676-682, 2008.
    [5] L. C. Ornellas, G. Stefanidis, R. Chuttani, A. Gelrud, T. B. Kelleher, D. K. Pleskow, “Covered Wallstents for palliation of malignant biliary obstruction: primary stent placement versus reintervention”, Gastrointestinal Endoscopy, Vol. 70, pp. 676-683, 2009.
    [6] H. Isayama, Y. Komatsu, T. Tsujino, N. Sasahira, K. Hirano, N. Toda, Y. Nakai, N. Yamamoto, M. Tada, H. Yoshida, Y. Shiratori, T. Kawabe, M. Omata, “A prospective randomised study of ‘‘covered’’ versus ‘‘uncovered’’ diamond stents for the management of distal malignant biliary obstruction”, Gut, Vol. 53, pp. 729-734, 2004.
    [7] Johns Hopkins Medicine. Liver tumor center. Retrieved January 11, 2018, from
    https://www.hopkinsmedicine.org/liver_tumor_center/conditions/bile_duct_cancer.html
    [8] L. Vogelaar, R. G. H. Lammertink, J. N. Barsema, W. Nijdam, L. A. M. Bolhuis-Versteeg, C. J. M. van Rijn, and M. Wessling, “Phase Separation Micromolding: A New Generic Approach for Microstructuring Various Materials”, Small, Vol. 1, pp. 645-655, 2005.

    [9] M. Bikel, I. G. M. Pünt, R. G. H. Lammertink, M. Wessling, “Shrinkage effects during polymer phase separation on microfabricated molds”, Journal of Membrane Science, Vol. 347, pp. 141-149, 2010.
    [10] 曹韋量,「自潔多層覆膜支架開發」,碩士論文,國立台灣科技大學,台北,2018。
    [11] R. Auras, B. Harte, S. Selke, “An Overview of Polylactides as Packaging Materials”, Macromolecular Bioscience, Vol. 4, pp. 835-864, 2004.
    [12] L. T. Lima, R. Aurasb, M. Rubinob, “Processing technologies for poly(lactic acid)”, Progress in Polymer Science, Vol. 33, pp. 820-852, 2008.
    [13] K. M. Nampoothiri, N. R Nair, Rojan P. John, “An overview of the recent developments in polylactide (PLA) research”, Bioresource Technology, Vol.101, pp.8493-8501, 2010.
    [14] X. Zhang, M. Espiritu, A. Bilyk, L. Kurniawan, “Morphological behaviour of poly(lactic acid) during hydrolytic degradation”, Polymer Degradation and Stability, Vol. 93, pp. 1964-1970, 2008.
    [15] F. Codari, S. Lazzari, M. Soos, G. Storti, M. Morbidelli, D. Moscatelli, “Kinetics of the hydrolytic degradation of poly(lactic acid)”, Polymer Degradation and Stability, Vol. 97, pp. 2460-2466, 2012.
    [16] F. Iñiguez-Franco, R. Auras, G. Burgess, D. Holmes, X. Fang, M. Rubino, H. Soto-Valdez, “Concurrent solvent induced crystallization and hydrolytic degradation of PLA by water-ethanol solutions”, Polymer, Vol. 99, pp. 315-323, 2016.
    [17] C. C. DeMerlis, D. R. Schoneker, “Review of the oral toxicity of polyvinyl alcohol (PVA)”, Food and Chemical Toxicology, Vol. 41, pp. 319-326, 2003.
    [18] E. Chiellini, A. Corti, S. D'Antone, R. Solaro, “Biodegradation of poly (vinyl alcohol) based materials”, Progress in Polymer Science, Vol. 28, pp. 963-1010, 2003.

    [19] D. H. Kim, S. G. Kang, J. R. Choi, J. N. Byun, Y. C. Kim, Y. M. Ahn, “Evaluation of the Biodurability of Polyurethane-Covered Stent Using a Flow Phantom”, Korean Journal of Radiology, Vol. 2, pp.75-79, 2001.
    [20] L. Xu, K. Crawford, C. B. Gorman, “Effects of Temperature and pH on the Degradation of Poly(lactic acid) Brushes”, Comprehensive Biomaterials, Vol. 1, pp. 381-415, 2011.
    [21] K. Nakane, Y. Hata, K. Morita, T. Ogihara, N. Ogata, “Porous Poly(L-lactic acid)/Poly(ethylene glycol) Blend Films”, Applied Polymer Science, Vol. 94, pp. 965-970, 2004.
    [22] X. Wang, S. S. Venkatraman, F. Y. C. Boey, J. S. C. Loo, L. P. Tan, “Controlled release of sirolimus from a multilayered PLGA stent matrix”, Biomaterials, Vol. 27, pp. 5588-5595, 2006.
    [23] H. Tsuji, “Poly(lactide) Stereocomplexes: Formation, Structure, Properties, Degradation, and Applications”, Macromolecular Bioscience, Vol. 5, pp. 569-597, 2005.

    無法下載圖示 全文公開日期 2024/08/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE