簡易檢索 / 詳目顯示

研究生: 張書嘉
Shu-Chia Chang
論文名稱: 岩瀝青改質瀝青混凝土之材料特性與工程性質評估
Material Characteristics and Evaluation of Engineering Properties of Rock Modified Asphalt Concrete
指導教授: 廖敏志
Min-Chih Liao
沈得縣
Der-Hsien Shen
口試委員: 陳建旭
Jian-Shiuh Chen
杜嘉崇
Jia-Chong Du
蘇育民
Yu-Min Su
林彥宇
Yen-Yu Lin
黃兆龍
Chao-Lung Hwang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 242
中文關鍵詞: 岩瀝青岩瀝青改質瀝青濕式乾式流變特性鋪面性能
外文關鍵詞: Rock asphalt, Rock modified asphalt, Wet modification process, Dry modification process, Rheological property, Pavement performance
相關次數: 點閱:324下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先將布敦岩瀝青(Buton rock asphalt, BRA)萃取出純岩瀝青(Pure rock asphalt, PRA),再將純岩瀝青視為改質劑添加於石油瀝青AC-20中形成岩瀝青改質瀝青(Rock modified asphalt, RMA)。本研究運用動態剪切流變儀(Dynamic shear rheometer, DSR)針對岩瀝青改質瀝青進行振盪(Oscillation)試驗及多重應力潛變恢復(Multiple stress creep recovery, MSCR)試驗,探討岩瀝青改質瀝青之流變特性及純岩瀝青之最適添加量。並探討岩瀝青改質瀝青混凝土(Rock modified asphalt concrete, RMAC)配合設計方法,包含乾式及濕式配合設計法,而岩瀝青改質瀝青混凝土包含密級配、石膠泥及多孔隙三種類型。最後,將高分子改質瀝青混凝土視為控制組,岩瀝青改質瀝青混凝土視為對照組進行力學性質、鋪面績效、耐久性質及聲學特性試驗,透過試驗結果之分析比較以探討岩瀝青應用於瀝青混凝土鋪面之成效。
    研究結果顯示,在岩瀝青改質瀝青流變特性方面,純岩瀝青能提升AC-20於高溫環境或極低車速作用下之抗黏滯流能力,亦能增進AC-20於非線性黏彈性狀態時之抗永久變形能力,使岩瀝青改質瀝青於鋪面使用階段時具有良好之抗車轍能力。為求岩瀝青改質瀝青具有適當之黏彈特性以具備抵抗高溫變形及抵抗低溫開裂之能力,本研究建議岩瀝青改質瀝青之純岩瀝青添加量為15 %至34%。在岩瀝青應用於瀝青混凝土方面,就岩瀝青改質瀝青混凝土力學性質而言,以濕式改質程序透過增加瀝青黏結料黏滯度及降低瀝青黏結料針入度之模式可提升岩瀝青改質瀝青混凝土之力學性質。就岩瀝青改質瀝青混凝土鋪面績效而言,以濕式改質程序透過增加瀝青黏結料之抗車轍參數及降低瀝青黏結料不可恢復潛變柔量之模式可提升其抗車轍性能。就岩瀝青改質瀝青混凝土耐久性質而言,若欲提升岩瀝青改質瀝青混凝土之耐久性質應由降低其瀝青黏結料之針入度著手,惟其純岩瀝青之當量含量(Pure rock asphalt equivalent content, PRAeq)大於15%時其磨耗率有偏高之趨勢。就岩瀝青改質瀝青混凝土聲學特性而言,厚度為7cm之岩瀝青改質瀝青混凝土有著吸收聲波頻率為600~700Hz之吸音特性,此外,岩瀝青改質多孔隙瀝青混凝土之孔隙率為20%且其表面巨觀紋理明顯,具有較佳之吸音效果。就整體而言,岩瀝青改質瀝青混凝土之力學性質與高分子改質瀝青混凝土相近,且岩瀝青改質瀝青混凝土比高分子改質瀝青混凝土更具有抗水侵害及抗浸水剝脫之能力,而濕式岩瀝青改質瀝青混凝土之鋪面性能又優於乾式。添加適量之岩瀝青於瀝青混凝土中確能增進其鋪面性能。


    In this study, pure rock asphalt (PRA) was extracted from Buton rock asphalt. The PRA was added as a modifier to petroleum asphalt cement (AC-20) to form rock modified asphalt (RMA). A dynamic shear rheometer was used to conduct an oscillation test and multiple stress creep recovery test on the RMA to investigate its rheological properties and the optimum addition amount of PRA. The rock modified asphalt concrete (RMAC) design method including dry and wet modification processes was discussed. The RMAC included dense graded asphalt concrete, stone matrix asphalt, and porous asphalt concrete. The polymer modified asphalt concrete was the control group and the rock asphalt modified asphalt concrete was the experimental group. The asphalt mixtures were compared in terms of mechanical properties, pavement performance, durability, and acoustic characteristics to investigate the effectiveness of rock asphalt addition to asphalt concrete.
    Regarding the rheological properties of the RMA, research results show that the anti-viscous flow ability of AC-20 under high temperature environment or very low vehicle speed was improved. The permanent deformation resistance ability of AC-20 in the nonlinear viscoelasticity state was also improved. It indicates that the rutting resistance of rock modified asphalt concrete can be enhanced. In order to obtain the appropriate viscoelastic properties of rock modified asphalt to resist high-temperature deformation and low-temperature cracking, this study recommends that the PRA content of RMA be in the range of 15 to 34%.
    Regarding the mechanical properties of the RMAC, the viscosity of the asphalt binder could be increased and the penetration of the asphalt binder could be reduced through the wet modification process. The mechanical properties of the RMAC could be improved. In terms of the pavement performance of the RMAC, the rutting parameter of the asphalt binder could be increased and the non-recoverable compliance of the asphalt binder could be reduced through the wet modification process. The rutting resistance performance of the RMAC could be enhanced. Concerning the durability properties of the RMAC, the penetration of asphalt binder should be reduced to improve the durability of the RMAC. However, when the pure asphalt equivalent content (PRAeq) of rock modified asphalt concrete is higher than 15%, it can be found that the asphalt mixture tends to have a higher Cantabria abrasion ratio. Regarding the acoustic characteristics of the RMAC, 7-cm-thick RMAC has the sound absorption characteristics of sound waves with absorption frequency of 600~700Hz. In addition, rock asphalt modified porous asphalt concrete has air void of 20% and its surface has large macroscopic texture. Thus, rock asphalt modified porous asphalt concrete has better sound absorbing effect.
    Overall, the mechanical properties of the RMAC were comparable to those of polymer modified asphalt concrete. RMAC exhibited higher moisture damage resistance and lower moisture susceptibility compared with the polymer modified asphalt concrete. The pavement performance of the RMAC produced using the wet modification process was superior to that of the RMAC produced using the dry modification process. The pavement performance of asphalt concrete can thus be improved by adding a suitable amount of rock asphalt.

    論文摘要 I ABSTRACT III 誌謝 V 目錄 VII 表目錄 XI 圖目錄 XIII 符號說明 XIX 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的 3 1-3 研究範圍 3 1-4 研究方法與流程 4 第二章 文獻回顧 7 2-1 石油瀝青基本性質 7 2-1-1 石油瀝青之物理性質 7 2-1-2 瀝青化學元素成分 8 2-1-3 瀝青化學型態組成成分 9 2-1-4 瀝青膠體系統 16 2-2 岩瀝青之基本性質 19 2-2-1岩瀝青之來源 19 2-2-2岩瀝青之物理性質 19 2-2-3岩瀝青之化學性質 20 2-3 改質石油瀝青 20 2-3-1石油瀝青膠泥之改質劑 21 2-3-2聚合物改質劑之改質機理 21 2-3-3改質瀝青之製作 21 2-4 瀝青流變特性 22 2-4-1 流變學與動態剪切流變儀 22 2-4-1 瀝青流變行為與流變參數 23 2-4-2動態力學分析 25 2-4-3 時間與溫度重疊原理 28 2-4-4 溫度平移因子 29 2-4-5 零剪切黏滯度及低剪切黏滯度 32 2-4-6 等值黏滯溫度 33 2-5熱拌瀝青混凝土 36 2-5-1 密級配瀝青混凝土 37 2-5-2石膠泥瀝青混凝土 38 2-5-3多孔隙瀝青混凝土 38 2-6 岩瀝青改質瀝青混凝土 39 第三章 試驗材料與試驗計畫 43 3-1試驗計畫 43 3-2試驗材料 45 3-3 試驗材料物性試驗計畫 47 3-3-1瀝青材料物性試驗 47 3-3-2 岩瀝青物性試驗 53 3-3-3粒料基本物性試驗 53 3-4 岩瀝青改質瀝青流變特性試驗計畫 59 3-4-1 頻率及溫度掃描試驗 60 3-4-3 多重應力潛變回復試驗 62 3-5 瀝青混凝土配合設計 63 3-5-1 密級配瀝青混凝土配合設計 64 3-5-2 石膠泥瀝青混凝土配合設計 67 3-5-3 多孔隙瀝青混凝土配合設計 71 3-6力學性質試驗 72 3-6-1馬歇爾穩定值試驗 73 3-6-2間接張力強度試驗 73 3-7 鋪面績效試驗 76 3-7-1 Cantabria磨耗試驗 76 3-7-2車轍輪跡試驗 77 3-7-3 透水試驗 79 3-8 耐久性質試驗 81 3-8-1 烘箱加速老化試驗 81 3-8-2 浸水馬歇爾試驗 83 3-8-3 浸水剝脫試驗 84 3-9 聲學特性試驗(雙麥克風法) 85 第四章 材料試驗結果分析與討論 89 4-1 瀝青材料物性分析 89 4-1-1 改質瀝青Ⅲ型及石油瀝青AC-20物性試驗結果 89 4-1-2岩瀝青物性試驗結果 91 4-2粒料物性分析 92 第五章 岩瀝青改質瀝青之流變特性 95 5-1 概述 95 5-2 岩瀝青改質瀝青之最佳拌合溫度與拌合時間 96 5-3 流變性質試驗之試體準備及試體編號 100 5-4 頻率及溫度掃描試驗結果分析 100 5-4-1 複合剪切模數主曲線及相位角主曲線 100 5-4-2 抗車轍參數及臨界高溫性能溫度 103 5-4-3 零剪切黏滯度及低剪切黏滯度 105 5-4-4 等值黏滯溫度 108 5-5 多重應力潛變回復試驗結果分析 110 5-6 岩瀝青改質瀝青中純岩瀝青含量之建議 113 第六章 岩瀝青改質瀝青混凝土配合設計結果分析 115 6-1 概述 115 6-2 瀝青黏結料性質探討 118 6-3 密級配瀝青混凝土配合設計結果 126 6-4 石膠泥瀝青混凝土配合設計結果 128 6-5 多孔隙瀝青混凝土配合設計結果 130 第七章 岩瀝青改質瀝青混凝土之工程性質評估 133 7-1 密級配瀝青混凝土 133 7-1-1 力學性質試驗 133 7-1-2 鋪面績效試驗 138 7-1-3 耐久性質試驗 143 7-1-4 聲學特性試驗 152 7-2 石膠泥瀝青混凝土 153 7-2-1 力學性質試驗 153 7-2-2鋪面績效試驗 157 7-2-3耐久性質試驗 162 7-2-4 聲學特性試驗 171 7-3 多孔隙瀝青混凝土 172 7-3-1 力學性質試驗 172 7-3-2鋪面績效試驗 176 7-3-3耐久性質試驗 182 7-3-4 聲學特性試驗 191 第八章 綜合分析與應用策略 193 8-1 力學性質 193 8-2 鋪面績效 195 8-3 耐久性質 198 8-4 聲學特性 201 第九章 結論與建議 205 9-1 結論 205 9-1-1 岩瀝青改質瀝青之流變特性 205 9-1-2 岩瀝青改質瀝青混凝土之力學性質 206 9-1-3 岩瀝青改質瀝青混凝土之鋪面績效 207 9-1-4 岩瀝青改質瀝青混凝土之耐久性質 207 9-1-5 岩瀝青改質瀝青混凝土之聲學特性 208 9-2 建議 209 參考文獻 211

    1. Widyatmoko, I. and Elliott, R., “Characteristics of elastomeric and plastomeric binders in contact with natural asphalts,” Constr. Build. Mater., Vol. 22, pp. 239-249, 2008.
    2. Li, R., Karki, P., Hao, P. and Bhasin, A., “Rheological and low temperature properties of asphalt composites containing rock asphalts,” Constr. Build. Mater., Vol. 96, pp. 47-54, 2015.
    3. Du, Q.L., Wang, Q.K. and Wang, G.Q., “Research on appraisal of BMA road performance,” Highway, Vol. 8, pp. 133-135, 2005.
    4. Liu, S.T., Yang, Y.S., Fang, J.G. and Guo, Z.Y., “Experimental research of bituminous mixtures modified by Buton rock asphalt,” Journal of Tongji University (Natural Science), Vol. 35, No. 3, pp. 351-355, 2007.
    5. Karami M. and Nikraz H., “Using advanced materials of granular BRA modifier binder to improve the flexural fatigue performance of asphalt mixtures,” Procedia Engineering, Vol. 125, pp. 452-460, 2015.
    6. Karami, M., Nikraz, H., Sebayang, S. and Irianti, L., “Laboratory experiment on resilient modulus of BRA modified asphalt mixtures,” International Journal of Pavement Research and Technology, Vol. 11, pp. 38-46, 2018.
    7. Suaryana, N., “Performance evaluation of stone matrix asphalt using indonesian natural rock asphalt as stabilizer,” International Journal of Pavement Research and Technology, Vol. 9, pp. 387-392, 2016.
    8. Hadiwardoyo, S.P., Sinaga, E.S. and Fikri, H., “The influence of Buton asphalt additive on skid resistance based on penetration index and temperature,” Constr. Build. Mater., Vol. 42, pp. 5-10, 2013.
    9. Kawakami, A., Sasaki, I., Kubo, K. and Ueno, S., Hermadi M. and Pravianto W. “Possibility to utilize new natural rock asphalt for guss asphalt,” Proceedings of the International Conference on Asphalt Pavements,” Vol. 2, pp. 1513-1520, 2014.
    10. Airey, G.D., Singleton, T.M. and Collop, A.C., “Properties of polymer modified bitumen after rubber-bitumen interaction,” Journal of Materials in Civil Engineering, Vol. 14, pp. 344-354, 2002.
    11. 蔡攀鰲,「瀝青混凝土」,修訂二版一刷,三民書局,2009。
    12. 施義隆,「廢棄水泥混凝土塊拌製瀝青混凝土可行性之研究」,國立台灣科技大學營建工程系碩士論文,1998。
    13. Lesueur, D., “The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification,” Advances in Colloid and Interface Science, Vol. 145, pp. 42-82, 2009.
    14. Redelius, P., and Soenen, H., “Relation between bitumen chemistry and performance,” Fuel, Vol. 140, pp. 34-43, 2015.
    15. Nahar, S.N., “Phase-Separation Characteristics of Bitumen and Their Relation to Damage-Healing,” Ph.D. thesis, Delft University of Technology, 2016.
    16. Wang, J., Wang, T., Hou, X. and Xiao, F., “Modelling of rheological and chemical properties of asphalt binder considering SARA fraction,” Fuel, Vol. 238, pp. 320-330, 2019.
    17. Distin, T.R., Myburgh, P.A., Louw, J.G. and Zacharias, M.P., “Sabita Manual 2: Bituminous Binders for Road Construction and Maintenance,” 4th edition, Published by Southern African Bitumen Association (Sabita), Howard Place, 2007.
    18. Hunter, R.N., Self, A. and Read, J., “The Shell Bitumen Handbook,” 6th edition, Published for Shell Bitumen by ICE Publishing, London, 2015.
    19. Ashoori, S., Sharifi, M., Masoumi, M. and Salehi, M.M., “The relationship between SARA fractions and crude oil stability,” Egyptian Journal of Petroleum, Vol. 26, pp. 209-213, 2017.
    20. Behnood, A. and Gharehveran, M.M., “Morphology, rheology, and physical properties of polymer-modified asphalt binders,” European Polymer Journal, Vol. 112, pp. 766-791, 2019.
    21. 林志棟、羅金都、楊丞毅、劉人慈,「布敦岩瀝青用於台灣鋪面之可行性研究」,鋪面工程,第十卷,第四期,第61∼68頁,2012。
    22. 「天然岩瀝青的研究與應用」,同濟大學交通運輸工程學院道路與機場工程系,2006。
    23. Li, R., Hao, P. and Wang, C., “Research on the road performance of BRA modified asphalt mixture,” Journal of Wuhan University of Technology, No. 1, pp. 50-54, 2011.
    24. Yusoff, N.I.M., Shaw, M.T. and Airey, G.D., “Modelling the linear viscoelastic rheological properties of bituminous binders,” Constr. Build. Mater., Vol. 25, pp. 2171-2189, 2011.
    25. Yusoff, N.I.M., “Modelling the Linear Viscoelastic Rheological Properties of Bituminous Binders,” Ph.D. thesis, University of Nottingham, 2012.
    26. Airey, G.D., “Use of black diagrams to identify inconsistencies in rheological data,” Road Materials and Pavement Design, Vol. 3, pp. 403-424, 2002.
    27. Liao, M.C., “Small and Large Strain Rheological and Fatigue Characterization of Bitumen-Filler Mastics,” Ph.D. thesis, University of Nottingham, 2007.
    28. Petersen, J.C., Robertson, R.E., Branthaver, J.F., Harnsberger, P.M., Duvall, J.J., Kim, S.S., Anderson, D.A., Christensen, D.W., Bahia, H.U., Dongre, R., Antle, C.E. Sharma, M.G., Button, J.W. and Glover, C.J., “Binder Characterization and Evaluation Volume 4: Test Methods,” Strategic Hihghway Rssearch Program, SHRP-A-370, 1994.
    29. Anderson, D.A., Christensen, D.W., Bahia, H.U., Dongre, R., Sharma, M.G., Antle, C.E. and Botton, J., “Binder Characterization and Evaluation Volume 3: Physical Characterization,” Strategic Highway Research Program, SHRP-A-369, 1994.
    30. Yusoff, N.I.M., Chailleux, E. and Airey, G.D., “A comparative study of the influence of shift factor equations on master curve construction,” International Journal of Pavement Research and Technology, Vol. 4, pp. 324-336, 2011.
    31. 羅尊仁,「橡膠瀝青流變行為與工程性質評估」,國立台灣科技大學營建工程系碩士論文,2018。
    32. Liao, M.C. and Chen, J.S., “Zero shear viscosity of bitumen-filler mastics,” Journal of Material in Civil Engineering, Vol. 23, pp. 1672-1680, 2011.
    33. Anderson, D.A., Le Hir, Y.M., Planche, J. and Martin, D., “Zero shear viscosity of asphalt binders,” Transportation Research Record, No. 1810, pp. 54-62, 2002.
    34. Liao, M.C., Chen, J.S., Airey, G.D. and Wang, S.J., “Rheological behavior of bitumen mixed with Trinidad lake asphalt,” Constr. Build. Mater., Vol. 66, pp. 361-367, 2014.
    35. Zoorob, S.E., Castro-Gomes, J.P. and Oliveira, L.A.P., “Assessing low shear viscosity as the new bitumen Softening Point test,” Constr. Build. Mater., Vol. 27, pp. 357-367, 2012.
    36. British Standards, “Bitumen and Bituminous Binders-Determination of Equiviscous Temperature Based on Low Shear Viscosity Using a Dynamic Shear Rheometer in Low Frequency Oscillation Mode,” BSI DD CEN/TS 15324, 2008.
    37. 沈得縣、吳佳銘,「瀝青混凝土拌合廠評鑑及認可機制」,再生瀝青混凝土回訓班研討會論文集,2006。
    38. 張書嘉,「轉爐石裹漿技術應用於石膠泥水泥瀝青混凝土鋪面之研究」,國立台灣科技大學營建工程系碩士論文,2013。
    39. 沈得縣、呂正宗,「半剛性瀝青混凝土配比及耐久性之研究」,兩岸路面工程學術研討會論文集,第40~51頁,2004。
    40. Asphalt Institute, “Mix Design Methods on Asphalt Concrete and Other Hot Mix Type,” 6th edition, AI MS-2,1994.
    41. 曾士芳,「轉爐石裹漿應用於密級配瀝青混凝土鋪面可行性之研究」,國立台灣科技大學營建工程系碩士論文,2011。
    42. Mora, C.F., Kwan, A.K.H. and Chan, H.C., “Pareicle size distribution analysis of coarse aggregate using digital image processing,” Cement and Concrete Research, Vol. 28, No. 6, pp. 921-932,1998.
    43. 沈得縣,「石膠泥瀝青混凝土之配合設計與品質管制」,國立臺灣科技大學營建工程技術24期,第41~70頁,2001。
    44. 沈得縣,「多孔隙瀝青混凝土路面之設計與施工」,材料科技在營建工程上應用研討會論文集,第149~171頁,2000。
    45. Zamhari, K.A., Hermadi, M. and Ali, M.H., “Comparing the performance of granular and extracted binder from Buton rock asphalt,” International Journal of Pavement Research and Technology, Vol. 7, pp. 25-30, 2014.
    46. Li, R., Hao, P. and Wang, C., “Modified mechanism of Buton rock asphalt,” Journal of Highway and Transportation Research and Development, Vol. 28, pp. 16-20, 2011.
    47. Bazlamit, S.M. and Reza, F., “Changes in asphalt pavement friction components and adjustment of skid number for temperature,” Journal of Transportation Engineering, Vol. 131, pp. 470-476, 2005.
    48. Liu S., Cao W., Li X., Li Z. and Sun,C., “Principle analysis of mix design and performance evaluation on superpave mixture modified with Buton rock asphalt,” Constr. Build. Mater., Vol. 176, pp. 549-555, 2018.
    49. Witczak, M.W., Kaloush, K., Pellinen, T., El-basyouny, M. and Quintus, H.V., “NCHRP Report 465:Simple Performance Test for Superpave Mix Design,” Transportation Research Board, Washington, 2002.
    50. Zhong, K., Yang, X. and Luo, S., “Performance evaluation of petroleum binders and mixtures modified by natural rock asphalt from Xinjiang China,” Constr. Build. Mater., Vol. 154, pp. 623-631, 2017.
    51. Wang, C., Wang, H., Zhao, L. and Cao, D., “Experimental study on rheological characteristics and performance of high modulus asphalt binder with different modifiers,” Constr. Build. Mater., Vol. 155, pp. 26-36, 2017.
    52. West, R.C., Watson, D.E., Turner, P.A. and Casola, J.R., “NCHRP Report 648:Mixing and Compaction Temperatures of Asphalt Binders in Hot-Mix Asphalt,” Transportation Research Board, Washington, 2010.
    53. Zhang, L., Xing, C., Gao, F., Li, T.S. and Tan, Y.Q., “Using DSR and MSCR tests to characterize high temperature performance of different rubber modified asphalt,” Constr. Build. Mater., Vol. 127, pp. 466-474, 2016.
    54. Kedarisetty, S., Biligiri, K.P. and Sousa, J.B., “Advanced rheological characterization of reacted and activated rubber (RAR) modified asphalt binders,” Constr. Build. Mater., Vol. 122, pp. 12-22, 2016.
    55. 孫建哲,「岩瀝青摻配技術及其應用於密級配瀝青混凝土鋪面之研究」,國立台灣科技大學營建工程系碩士論文,2014。
    56. 李承効,「再生綠建材強化技術對瀝青混凝土鋪面績效影響之研究」,國立台灣科技大學營建工程系博士論文,2011。
    57. 許家祥,「廢棄混凝土裹漿技術及其應用於瀝青混凝土鋪面績效之研究」,國立台灣科技大學營建工程系碩士論文,2008。
    58. Hughes, C.S. and Kandhal, P.S., “Quality Improvement Series 122:Designing and Constructing SMA Mixtures—State-of-the-Practice,” Published by the National Asphalt Pavement Association (NAPA), Maryland, 2002.
    59. Tashman, A. and Pearson, B., “Characterisation of stone matrix asphalt mixtures,” International Journal of Pavement Engineering, Vol. 13, No. 4, pp. 297-309, 2012.
    60. 曾瑞文,「岩瀝青摻配技術及其應用於石膠泥瀝青混凝土鋪面之研究」,國立台灣科技大學營建工程系碩士論文,2014。
    61. 李明憲,「岩瀝青摻配技術及其應用於多孔隙瀝青混凝土鋪面之研究」,國立台灣科技大學營建工程系碩士論文,2014。
    62. 吳學禮,「舖面、材料工程實務」,二版一刷,詹氏書局,2001。
    63. Brown, E.R., Kandhal, P.S., Roberts, F.L., Kim, R., Lee, D.T. and Kennedy, T.W., “Hot Mix Asphalt Materials, Mixture Design, and Construction,” 3rd edition, Published by NAPA Research and Education Foundation, Maryland, 2009.
    64. Soleimani, A., “Use of dynamic phase angle and complex modulus for the low temperature performance grading of asphalt cements,” Master thesis, Queen’s University, 2009.
    65. Gama, D.A., Júnior, J.M.R., Melo, T.J.A. and Rodrigues, J.K.G., “Rheological studies of asphalt modified with elastomeric polymer. Constr. Build. Mater., Vol. 106, pp. 290-295, 2016.
    66. Dondi, G., Vignali, V., Pettinari, M., Mazzotta, F., Simone, A. and Sangiorgi, C., “Modeling the DSR complex shear modulus of asphalt binder using 3D discrete element approach,” Constr. Build. Mater., Vol. 54, pp. 236-246, 2014.
    67. Cosme, R.L., Teixeira, J.E.S.L. and Calmon, J.L., “Use of frequency sweep and MSCR tests to characterize asphalt mastics containing ornamental stone residues and LD steel slag,” Constr. Build. Mater., Vol. 122, pp. 556-566, 2016.
    68. Meena, S. and Biligiri, K.P., “Binder rheological predictive models to evaluate rutting performance of asphalt mixtures,” Constr. Build. Mater., Vol. 111, pp. 556-564, 2016.
    69. Wang, C., Zhao, L., Cao, W., Cao, D. and Tian, B., “Development of paving performance index system for selection of modified asphalt binder,” Constr. Build. Mater., Vol. 153, pp. 695-703, 2017.
    70. Zhang, J., Walubita, L.F., Faruk, A.N.M., Karki, P. and Simate, G.S., “Use of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance – A laboratory study,” Constr. Build. Mater., Vol. 94, pp. 218-227, 2015.
    71. American Society for Testing and Materials, “ASTM D2493/D2493M-09: Standard Viscosity-Temperature Chart for Asphalts,” ASTM International, West Conshohocken, PA, USA, 2010.
    72. Haider, S.W., Mirza, M.W., Thottempudi, A.K., Bari, J. and Baladi, G.Y., “Effect of test methods on viscosity temperature susceptibility characterization of asphalt binders for the mechanistic-empirical pavement design guide,” First Congress of Transportation and Development Institute (TDI), American Society of Civil Engineers (ASCE), pp. 482-492, 2011.
    73. Kumbargeri, Y.S. and Biligiri, K.P., “A novel approach to understanding asphalt binder aging behavior using asphaltene proportion as a performance indicator,” J. Test. Eval., Vol. 44, No. 1, pp. 439-449, 2016.
    74. Mallick, R.B. and El-Korchi, T., “ Pavement Engineering:Principles and Practice,” 3rd edition, CRC Press, Boca Raton,2017.
    75. Wayson, R.L., “NCHRP Synthesis of Highway Practice 268:Relationship Between Pavement Surface Texture and Highway Traffic Noise,” Transportation Research Board, Washington, 1998.
    76. 日本道路協會,「排水性鋪裝技術指針(案)」,1998。
    77. Shen, D.H., Wu, C.M. and Du, J.C., “Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture,” Constr. Build. Mater., Vol. 23, pp. 453-461, 2009.
    78. Kandhal, P.S. and Mallick, R.B., “Design of New-generation Open-graded Friction Courses,” NCAT Report, No. 99-3, 1999.
    79. Shirini, B. and Imaninasab, R., “Performance evaluation of rubberized and SBS modified porous asphalt mixtures,” Constr. Build. Mater., Vol. 107, pp. 165-171, 2016.
    80. 公路總局,「施工說明書第02741章:瀝青混凝土之一般要求」,交通部公路總局,2012。
    81. 臺灣區國道新建工程局,「多孔隙瀝青混凝土(PAC)設計施工及養護技術手冊」,交通部臺灣區國道新建工程局,2013。
    82. Chavanpatil, G.N. and Chokakkar, S.S., “The study of porous asphalt pavement with emphasis in road construction design,” International Research Journal of Engineering and Technology, Vol. 5, pp. 623-627, 2018.
    83. Liu, M., Huang, X. and Xue, G., “Effects of double layer porous asphalt pavement of urban streets on noise reduction,” International Journal of Sustainable Built Environment, Vol. 5, pp. 183-196, 2016.
    84. Camomilla, G., Malgarini, M. and Gervasio, S., “Sound absorption and winter performance of porous asphalt pavement,” Transportation Research Record, No. 1265, pp. 1-8, 1990.
    85. Berengier, M.C. and Anfosso-Ledee, F., “State-of-art prediction and control of road traffic noise in France,” Transportation Research Record, No.1626, pp. 71-77, 1998.
    86. Morgan, P., “Guidance Manual for the Implementation of Low-noise Road Surfaces,” FEHRL Report, Forum of European National Highway Research Laboratories, 2006.
    87. Crocker, M.J., Hanson, D., Li, Z., Karjatkar, R. and Vissamraju, K.S., “Measurement of acoustical and mechanical properties of porous road surfaces and tire and road noise,” Transportation Research Record, No. 1891, pp. 16-22, 2004.
    88. 吳佳銘,「含再生綠建材低噪音鋪面績效評估及噪音預測模式建立之研究」,國立台灣科技大學營建工程系博士論文,2008。

    無法下載圖示 全文公開日期 2024/08/07 (校內網路)
    全文公開日期 2029/08/07 (校外網路)
    全文公開日期 2029/08/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE