簡易檢索 / 詳目顯示

研究生: 徐仁傑
Jen-chieh Hsu
論文名稱: I-III-VI族量子點和氧化鐵磁性顆粒的二氧化矽複合物應用於雙功能造影
The Integration of Silica Nanohybrids with I-III-VI Quantum Dots and Magnetite Nanocrystals as Multifunctional Agents
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 何郡軒
Jinn-Hsuan Ho
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 106
中文關鍵詞: 雙功能顯影劑I-III-VI 族量子點
外文關鍵詞: silica coating, I-III-VI group qauntum dots, Multifunctional Agents
相關次數: 點閱:174下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究依醫學影像分析顯影科技發展方向,主要來作為開發雙功能顯影劑上的材料開發及結合核磁影像與光學造影技術的生物應用。此研究以I-III-VI族半導體材料作為材料主軸,分別以主要進行針對銀銦化硫AgInS2量子點進行最適化量子產率研究及CuInS2量子點及氧化鐵磁性顆粒的多功能顯影二氧化矽複合物合成、鑑定與應用。

    第一部分:主要進行提高銀銦化硫I-III-VI族量子點的量子產率為目的,並期許能夠開發較高量子產率、綠色環保及無毒性半導體材料,應用於光電材料或生物醫學科技。在AgInS2量子點的合成研究中,經實驗設計,我們主要藉由加入硫醇來抑制I族(Ag)與硫元素的反應活性及使用硬酯酸銦來提升III族(In)與硫的反應活性,平衡I族與III族元素與硫元素的反應性達到理想點,使在成核反應時可以產生高量子產率晶體。在參數調整方面,我們以主要改變前驅物比例作參數調整。在一系列的最佳化量子產率,可以知道在前驅物的特定比例,反應溫度150℃下,60分鐘可獲得10 %左右的量子產率。

    第二部分:利用二氧化矽來進行I-III-VI族量子點及磁性顆粒的表面改質,形成二氧化矽奈米複合物,並且提升溶解度及使之官能化,利用胺基矽烷及聚乙氧烯矽氧烷作表面修飾分別提供官能基鍵結和生物相容性,最後功能化複合物,特異性鍵結抗癌藥物,成功開發多功能顯影劑,並且針對此複合物光學、磁性及表面鑑定,確認此構想,能夠符合期待。在應用研究上,為了符合多功能的的顯影劑目的,我們分別利用此複合物進行MCF-7乳癌細胞的光學造影實驗及核磁共振造影MRI的T2影像測試。


    In this research, we developed engineering of multifunctional nanohybrids for biomedical imaging techniques including magnetic resonance imaging and confocal microscopy. We selected I-III-VI group materials as our targets and have two parts of experiment in this research.

    In the first purpose, we enhance quantum yield of AgInS2 quantum dots (QDs) by hot-injection method. Following the design of experiment, by using precursors and surfactant thiol as our experiment parameters to balance the reactivity of I group and III group element with surfactant thiol for developing the high-quality AgInS2 QDs. Finally, we get ~10 % quantum yield via optimizing the temperature and the ratios of Ag/In precursors, and surfactant thiol.

    Second, we successfully proposed a reliable method for producing multifunctional silica nanohybrids, entrapping fluorescent and superparamagnetic nanoparticles (NPs), as well as anticancer drug. This studies including three parts: (1) synthetic optimization of CuInS2/ZnS QDs, characterized by UV-Vis, PL, TEM and XRD, (2) the preparation of multifunctional silica nanohybrids consisting of CuInS2/ZnS QDs and Fe3O4 magnetic NPs by a reverse micro-emulsion method, and (3) anticancer drugs immobilized on the surface silica nanohybrids. As a consequence of these distinct properties, a combination of fluorescent and magnetic properties in one silica nanohybrids enables simultaneous biolabeling and magnetic resonance imaging.

    第一章、緒論 1-1前言……………………………………………………........................................1 1-2研究動機與內容....................................................................................................2 第二章、理論基礎與文獻回顧 2-1奈米晶體之基本特性與理論……………………………………………………..4 2-1-1奈米晶體之特性……………………………………………………………4 2-1-2奈米晶體之基礎理論…………………………………………………..…..7 2-1-3量子點之發展與應用……………………………………………..………11 2-1-4量子點在生醫方面應用…………………………………………….…….17 2-2 表面改質及功能化………………………………………………………….…..20 2-2-1表面改質及功能化在奈米顆粒上必要性……………………..……..…...20 2-2-2 氧化矽表面改質…………………..…………….…………….………….25 2-3奈米顆粒在生物影像的應用與文獻回顧………………………………...……..28 2-3-1磁性顆粒在生物領域應用………………………………..….…………....28 2-3-2 I-III-VI量子點在生物文獻回顧…………………………...….…………31 2-3-3多功能性磁性螢光顯影劑在生物文獻回顧……………..........................42 第三章、實驗方法 3-1實驗目的................................................................................................................44 3-2實驗架構…………………………………………………………………………45 3-3實驗藥品器材………………………………………………………….…....……47 3-4實驗量測儀器.........................................................................................................50 3-5實驗步驟. 3-5-1 AgInS2量子點製備……………………………………………….……….53 3-5-2 CuInS2/ZnS量子點合成………………………………………….………54 3-5-3 Fe3O4磁性顆粒合成……………………...……………………….………55 3-5-4 c,c,t-[Pt(NH3)2Cl2(O2CCH2CH2COOH)2]抗癌藥物合成……….…….55 3-5-5 氧化矽表面修飾CuInS2/ZnS量子點及Fe3O4磁性顆粒之合成.……....56 3-5-6 固定化c,c,t-[Pt(NH3)2Cl2(O2CCH2CH2COOH)2]抗癌藥物於二氧化矽複合物表面………………….……………………………………...…56 3-5-7細胞培養…………………………...………………………………..…..…57 3-6樣品分析……………………………………………………………………….…58 第四章、結果討論 第一部分:I-III-VI族AgInS2量子點製備與合成 4-1 AgInS2實驗設計…….……………………………………………………...…...63 4-2 AgInS2量子產率最佳化討論…………………………...…………...………….66 4-2-1 AgInS2之前驅物參數調整影響………...…………………….……….68 4-2-2 AgInS2之表面活性劑比例參數調整影響…………….………………….70 4-2-3 AgInS2的溫度參數調整影響………………………………………....….73 4-4 AgInS2量子點特徵化分析………………...………………………………...….75 第二部分:I-III-VI族CuInS2量子點和氧化鐵磁性顆粒的二氧化矽複合物應用於雙功能造影與藥物載體 4-3 I-III-VI族CuInS2量子點、抗癌藥物及氧化鐵磁性顆粒的合成與鑑定….….78 4-3-1 I-III-VI族CuInS2量子點特性分析……………….…...…………….….78 4-3-2 氧化鐵磁性顆粒特性分析…………………………………..……..…….83 4-3-3 抗癌藥物特性分析…………………………………....……..……..…….87 4-4氧化矽包覆與官能基接合合成與鑑定分析….....................................................90 4-4-1 四乙基矽酸(TEOS) 添加參數對實驗結果影響………...……….…......90 4-4-2 磁性顆粒與量子點在氧化矽包覆之後的影響………..………….……..92 4-4-3 二氧化矽複合物表面修飾後特徵分析…………..………………….…..94 4-4-4 二氧化矽奈米複合物官能基化接合抗癌藥物………..…………….…..99 4-5二氧化矽奈米複合物在生物應用……………………………………………...101 4-5-1 在生物影像的應用……………………………………...…….………...101 4-5-2 在核磁共振MRI顯影效果……………………………….…………....102 第五章、結論………………………………………………………………………..104 文獻參考……………………………………………………………………………105

    [1]羅吉宗編撰,奈米科技導論,全華圖書股份有限公司,台灣
    [2]張安華編撰(2005),實用奈米技術,新文京開發出版股份有限公司,台灣
    [3]蘇品書編撰(1999),超微粒子材料技術,復漢出版社,台灣
    [4] H. Kissel, U. Muller, C. Walther, W. T. Maselink, Phys. Rev. B , 2000, 62, 7213.
    [5]馬振基編撰(2005),奈米材料科技原理與應用,全華圖書股份有限公司,台灣
    [6]S.T. Selvan, P.K. Patra, C.Y. Ang, J.Y. Ying. Angew. Chem. Int. Ed. Eng.l 2007, 46,2448–2452.
    [7] H. J. Simmons, and S. P. Kelly, Optical Materials. San Diego, Academic Press, 2000
    [8]A. H. Kitai. Solid State Luminescence. New York, Chapman & Hall, 1993
    [9]Klaus D. Mielenz. Optical Radiation Measurements. New York, Academic Press, 1982
    [10] Ehrhart, Properties and interactions of atomic defects in metals and alloys, volume 25 of Landolt-Börnstein, New Series III, chapter 2, page 88, Springer, Berlin, 1991
    [11]簡有廷編撰(2010),I-III-VI族量子點製備與鑑定,台灣科技大學碩士論文,台灣
    [12] H. Kissel, U. Muller, C. Walther, and W. T. Maselink. Phys. Rev. B ,2000,62, 7213.
    [13] J. Wan, G. L. Jin, Z. M. Jiang, Y. H. Luo, J. L. Liu, and Kang L. Wang. Appl. Phys. Lett., 2001, 78, 1763.
    [14] S. M. Sze, Physics of Semiconductor Devices 2nd edition.
    [15] R. Rossetti, S. Nakahara, and L. E. Brus, J. Chem. Phys., 1983, 79, 1086
    [16] C. B. Murray, D. J. Noms, and M. G. Bawendi, J. Am. Chem. Soc., 1993, 115, 8706-8715.
    [17]X. Peng,Chem. Eur. J., 2002, 8, 335.
    [18]Z. A. Peng, and X. Peng, J. Am. Chem. Soc., 2001, 123, 183.
    [19]I. Mekis, D. V. Talapin, A. Kornowski, M. Haase, and H. Weller, J. Phys.Chem B, 2003, 107, 7454.
    [20]D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, Nano Lett., 2001, 1, 207.
    [21]P. Reiss, M. Protie`re, and L. Li, small, 2009, 5, 154.
    [22]A. Mews, A. Eychmu¨ller, M. Giersig, D. Schooss, and H. Weller, J. Phys.Chem., 1994, 98, 934–941.
    [23]D. Battaglia, J. J. Li, Y. J. Wang, and X. G. Peng, Angew. Chem. Int. Ed., 2003, 42, 5035–5039.
    [24] X. H. Zhong, R. G. Xie, Y. Zhang, T. Basche´,and W. Knoll, Chem. Mater., 2005, 17, 4038–4042.
    [25] J. Bang, J. Park, J. H. Lee, N. Won, J. Nam ,J. Lim, B. Y. Chang, H. J. Lee, B.Chon,J. Shin, Jae Byung Park, J. H. Choi, K. Cho,S. M. Park, T. Joo, and S. Kim, Chem. Mater., 2010, 22, 233–240.
    [26] S. Kim, B. Fisher, H. J. Eisler, and M. Bawendi, J. Am. Chem. Soc., 2003, 125, 11466-11467.
    [27] Xie, R. Rutherford,and M. X. Peng, J. Am. Chem. Soc., 2009, 131 , 5691-5697.
    [28] J.M. Klostranec, and W. C. W. Chan, Adv. Mater., 2006, 18, 1953–1964.
    [29] Igor L. Medintz, H. Tetsuo Uyeda, Ellen R. Goldman and Hedi Mattoussi, Nature Materials, 2005, 4, 435 - 446.
    [30] I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, Nat. Mater., 2003, 2, 630.
    [31] H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, Chem. Rev. 2010, 110, 2620–2640.
    [32]鄭凱安等編撰,量子點光電應用專利地圖及分析,行政院國家科學委員會科學技術資料中心,台灣
    [33] K. Nose, Y. Soma, T. Omata, and S.O.Y.Matsuo, Chem. Mater., 2009, 21, 2607–2613.
    [34] W. C. W. Chan, and S. M. Nie, Science, 1998, 281, 2016
    [35] S. Pathak, S. K. Choi, N. Arnheim, and M. E. Thompson, J. Am. Chem. Soc., 2001, 123, 4103
    [36] T. Pellegrino, Nano Lett., 2004, 4, 703
    [37] S. Kim, and M. G. Bawendi, J. Am. Chem. Soc., 2003, 125, 14652
    [38] W. Guo, J. J. Li, Y. A. Wang, and X. G. Peng, Chem. Mater., 2003, 15, 3125
    [39] F. Pinaud, D. King, H.-P. Moore, and S. Weiss, J. Am.Chem. Soc., 2004, 126, 6115 .
    [40] X. Michalet, F. F. Pinaud, L. A. Bentolila,J. M. Tsay, S. Doose,. J. J. Li, G. Sundaresan, A. M. Wu,S. S. Gambhir, and S. Weiss, Science, 2005, 37, 538
    [41] http://www.piercenet.com/browse.cfm?fldID=02030378
    [42] N. R. Jana, C. Earhart, and J. Y. Ying, Chem. Mater., 2007, 19, 5074-5082
    [43]S. Tamil Selvan, Pranab K. Patra, Chung Yen Ang, and Jackie Y. Ying, Angew. Chem. Int. Ed., 2007, 47, 2448
    [44] D. Gerion, F. Pinaud, S. C. Williams, Wolfgang J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, J. Phys. Chem. B, 2001, 105, 8861-8871
    [45] T. Mokari, H. Sertchook, A. Aharoni, Y. Ebenstein, D. Avnir, and U. Banin, Chem. Mater., 2005, 17, 258.
    [46] T. Li, J. Moon, A. A. Morrone, J. J. Mecholsky, D. R. Talham, and J. H. Adair, Langmuir, 1999, 15, 4328.
    [47] K.Yu, D. Thompsett, and S. Tsang, Chem. Commun., 2003, 39, 1522.
    [48] D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, and J. Y. Ying, J. Am. Chem. Soc., 2005, 127, 4990.
    [49] X. Gao, K. M. K. Yu, K. Y. Tam, and S. C. Tsang, Chem. Commun.,2003, 39, 2998.
    [50] S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard, and W. Tan, Langmuir, 2001, 17, 2900.
    [51] T. Mokari, H. Sertchook, A. Aharoni, Y. Ebenstein, D. Avnir, and U. Banin, Chem. Mater., 2005, 17, 258.
    [52] F. Teng, Z. Tian, G. Xiong, and Z. Xu, Catal. Today, 2004, 93-95, 651
    [53] S. Santra, H. Yang, P. H. Holloway, J. T. Stanley, and R. A. Mericle, J. Am. Chem. Soc., 2005, 127, 1656.
    [54 ] A. V. Blaaderen, and A. Vrij, Langmuir, 1992, 8, 2921.
    [55] S. Santra, H. Yang, D. Dutta, J. T. Stanley, P. H. Holloway, W. Tan, B. M. Moudgil, and R. A. Mericle, Chem. Commun., 2004, 40, 2810.
    [56] S. T. Selvan, Tan, T. T., Ying, and J. Y., Adv. Mater., 2005, 17, 1620
    [57] M. Darbandi, R. Thomann, and T. Nann, Chem. Mater., 2005, 17, 5720
    [58] Y. H. Yang, L. H. Jing, X. L. Yu, D. D. Yan, and M. Y. Gao, Chem. Mater., 2007, 19, 4123.
    [59] Y. H. Yang, and M. Y. Gao, Adv. Mater., 2005, 17, 2354.
    [60] R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de M. Donegá, D. C. ’t Hart, A. van Blaaderen, D. Vanmaekelbergh, and A. Meijerink, Chem. Mater., 2008, 20, 2503–2512
    [61] J. Cheno, and J. Lee, Acc. Chem. Res., 2008, 41, 1630–1640
    [62] R. Xie, M. Rutherford and X. Peng, J. Am. Chem. Soc., 2009, 131 ,5691–5697
    [63]http://python.rice.edu/~arb/Courses/chem360_07.htm
    [64] T. Omata, K. Nose, and S. Otsuka-Yao-Matsuo, J. Appl. Phys., 2009, 105, 073106
    [65] S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger and A. F. Hepp, J. Phys. Chem. B, 2004, 108, 12429-12435.
    [66] H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M.Miyazaki, and H. Maeda, Chem. Mater., 2006, 18, 3330-3335
    [67] T. Torimoto, T. Adachi, K.i Okazaki, M. Sakuraoka, T.i Shibayama, B. Ohtani, A. Kudo, and S. Kuwabata, J. Am. Chem. Soc., 2007, 129, 12388-12389
    [68] H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, Chem. Mater., 2008, 20, 6434–6443
    [69] R. Xie, M. Rutherford and X. Peng, J. Am. Chem. Soc., 2009, 131 ,5691–5697
    [70] L. Li, T. J. Daou, I. Texier, T. T. K. Chi, N. Q. Liem, and P. Reiss, Chem. Mater., 2009, 21, 2422–2429
    [71] D. Pan, X. Wang, Z. Zhou, W. Chen, C. Xu, and Y. Lu, Chem. Mater., 2009, 21, 2489.
    [72] C. Sun, J. S. Gardner, G. Long, C. Bajracharya, A. Thurber, A. Punnoose, R. G. Rodriguez, and J. J. Pak, Chem. Mater., 2010, 22, 2699
    [73] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, J. Am. Chem. Soc., 2008, 130, 16770.
    [74] B. Neumann, P. Bogdanoff, and H. Tributsch, J. Phys. Chem. C, 2009, 113, 20980.
    [75] J. Tang, S. Hinds, S. O. Kelley, and E. H. Sargent, Chem. Mater., 2008, 20, 6906.
    [76] T. Uematsu, T. Doi, T. Torimoto and S. Kuwabata, J. Phys. Chem. Lett., 2010, 1 , 3283–3287
    [77] A. M. Derfus, W. C. Chan, and S. Bhatia, Nano Lett., 2004, 4, 11-18
    [78] A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y. F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, and K. Yamamoto, Nano Lett., 2004, 4, 2163–2169.
    [79] C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. M. Javier, H. E. Gaub, S. Stolzle, N. Fertig, and W. J. Parak, Nano Lett., 2005, 5, 331–338.
    [80] G. Oberdorster, E. Oberdorster, and J. Oberdorster, Health Persp., 2005, 113, 823–839.
    [81] R. A. Hardman, Environ. Health Persp., 2006, 114, 165–172.
    [82] S. J. Cho, D. Maysinger, M. Jain, B. Roder, S. Hackbarth, and F. M. Winnik, Langmuir, 2007, 23, 1974–1980.
    [83] A. M. Smith, H. W. Duan, A. M. Mohs, and S. M. Nie, Adv. Drug Delivery Rev., 2008, 60, 1226–1240.
    [84] N. Lewinski, V. Colvin, and R. Drezek, Small, 2008, 4, 26–49
    [85] T. Pons, E. Pic, N. Lequeux, E. Cassette, L. Bezdetnaya, Franc¸ois Guillemin, F. Marchal, and B. Dubertret, Chem. Mater., 2009, 21, 2422–2429
    [86] K. Yong, I. Roy, R.Hu, H. Ding, H. Cai, J. Zhu, X. Zhang, E. J. Bergey, and P. N. Prasad, Integr. Biol., 2010, 2, 121–129
    [87] T. Pons, E. Pic, N. Lequeux, E. Cassette, L. Bezdetnaya, Franc¸ois Guillemin, F. Marchal, and B. Dubertret, Chem. Mater., 2009, 21, 2422–2429
    [88] J.-s. Choi, J. C. Park, M.-y. , Kim, H. Nah, S. Woo, S. Y. Yun, K. M. , Kim, G. Cheon, Y. Chang, J. Yoo, and J. A. Cheon, Angew. Chem.,Int. Ed., 2008, 47, 6259–6262.
    [89] M. Nahrendorf, H. Zhang, S. Hembrador, P. Panizzi, and D.E. Sosnovik, Circulation, 2008, 117, 379–387
    [90] R. Koole, W. J. M. Mulder, M. M. van Schooneveld, G. J. Strijkers, A.Meijerink and K. Nicolay, WIREs Nanomed Nanobiotechnol, 2009, 1, 475–491
    [91] J. H. Gao, B. Zhang, Y. Gao, Y. Pan, and X. Zhang, J. Am. Chem. Soc., 2007, 129,11928–11935.
    [92] H. Gu, R. Zheng, X. Zhang, and B. Xu, J. Am. Chem. Soc., 2004, 126,5664–5665.
    [93] H. Kim, M. Achermann, L.P. Balet, J.A. Hollingsworth, and V.I. Klimov, J. Am. Chem. Soc., 2005, 127,544–546.
    [94] S.T. Selvan, P.K. Patra, C.Y. Ang, and J. Y. Ying. Angew. Chem. Int. Ed. Eng., 2007, 46,2448–2452.
    [95] D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, and J. Y. Ying, J. Am. Chem. Soc., 2005, 127, 4990-4991
    [96] X. Hong, J. Li, M.J. Wang, J.J. Xu, and W. Guo, Chem. Mater., 2004, 16, 4022–4027.
    [97] N. Gaponik, S. G. Hickey, D. Dorfs, A. L. Rogach, and A. Eychmller, Small, 2010, 6, 1364.
    [98] W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, Adv.Mater., 2009, 21, 1690.
    [99] Y. Chen, M. Kim, G. Lian, M. B. Johnson, and X. Peng , J. Am. Chem. Soc., 2005, 127, 13331–13337
    [100] N. Weber, E. Klein, K. Vosmann and K. D. Mukherjee, Biotechnology Letters, 1998, 20, 687–691
    [101]Jaehyun Park and Sang-Wook Kim , J. Mater. Chem., 2011, 21, 3745
    [102]Z. Xu, C. Shen,Y. Hou,H. Gao, and S. Sun, Chem. Mater. 2009, 21, 1778–1780
    [103]R. A. Alderden, M. D. Hall, and T. W. Hambley, J. of Chem. Edu., 2006, 16, 728
    [104]R. Kuroda, S. Neidle, I. M. Ismail, and P. J. Sadler, Inorg. Chem., 1983, 22, 3620-3624
    [105] M. R. Reithofer, S. M. Valiahdi, M. A. Jakupec, V. B. Arion, A. Egger, M. Galanski, and B. K. Keppler, J. Med. Chem., 2007, 50, 6692–6699

    無法下載圖示 全文公開日期 2016/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE